

COPY

1 CASE NO. CRIM 24552

2 SUPREME COURT OF THE STATE OF CALIFORNIA

3

4 THE PEOPLE OF THE STATE)
5 OF CALIFORNIA,)

6 PLAINTIFF,)

7 -VS-)

8 KEVIN COOPER,)

9 DEFENDANT.)

SUPERIOR COURT
NO. CR-71787
MOTIONS

10 APPEAL FROM THE SUPERIOR COURT OF SAN DIEGO COUNTY

11 HONORABLE RICHARD C. GARNER, JUDGE PRESIDING

12

13 REPORTERS' TRANSCRIPT ON APPEAL

14

APPEARANCES:

15

FOR PLAINTIFF-RESPONDENT: HON. JOHN D. VAN DE KAMP
ATTORNEY GENERAL
DEPARTMENT OF JUSTICE
110 WEST "A" STREET
SUITE 600
SAN DIEGO, CA 92101

16

17

18

19

20

21

22

23

24

25

26

FOR DEFENDANT-APPELLANT: IN PROPRIA PERSONA

LEONARD D. GUNN
C.S.R. NO. 1109
AND
JUDITH L. MORRIS
C.S.R. NO. 2400
OFFICIAL REPORTERS

VOLUME ~~1449~~ 28

PAGES 1449 THROUGH 1566

0079714

1 SUPERIOR COURT OF THE STATE OF CALIFORNIA
2 FOR THE COUNTY OF SAN BERNARDINO
3 THE PEOPLE OF THE STATE)
4 OF CALIFORNIA,)
5 Plaintiff,)
6 vs.) NO. OCR-9319
7 KEVIN COOPER,) CR-72787
8 Defendant.) VOLUME 18
Pgs. 1449 thru 1566, inc.
9

10 REPORTERS' DAILY TRANSCRIPT
11 BEFORE HONORABLE RICHARD C. GARNER, JUDGE
12 DEPARTMENT 10 - SAN BERNARDINO, CALIFORNIA
13 Monday, April 30, 1984

14 APPEARANCES :

15 For the People: DENNIS KOTTMEIER
District Attorney
16 DENNIS KOTTMEIER
District Attorney
17 BY: JOHN P. KOCHIS
Deputy District Attorney
18
19 For the Defendant: DAVID McKENNA
Public Defender
20 BY: DAVID NEGUS
Deputy Public Defender
21
22 Reported By: LEONARD D. GUNN
Official Reporter
23 C.S.R. No. 1109
and
24 JUDITH L. MORRIS
Official Reporter
25 C.S.R. No. 2400
26

007975

I N D E X

2	<u>PEOPLE'S WITNESSES</u>	PAGE
3	SENSABAUGH, George F.	
4	Direct Examination by Mr. Kochis	1452
	Cross Examination by Mr. Negus	1489
5	Cross Examination (Resumed) by Mr. Negus	1514

	<u>EXHIBITS</u>	<u>FOR I.D.</u>	<u>IN EVIDENCE</u>
9			
10	7 - Vitae	1453	*
11	K-1 - Chart	1473	*
12	K-3 - Chart	1475	*
13	K-9 - Chart	1539	*

007976

1 SAN BERNARDINO, CALIFORNIA, MONDAY, APRIL 30, 1984; 9:45 A.M.

1-1 2 DEPARTMENT NO. 10 HON. RICHARD C. GARNER, JUDGE

3 APPEARANCES:

4 The defendant with his Counsel, DAVID
5 NEGUS, Deputy Public Defender of San
6 Bernardino County; DENNIS KOTTMEIER,
7 District Attorney of San Bernardino
8 County, and JOHN P. KOCHIS, Deputy
9 District Attorney of San Bernardino
10 County, representing the People of
11 the State of California.

12 (Leonard D. Gunn, C.S.R., Official Reporter, C-1109,
13 Judith L. Morris, C.S.R., Official Reporter, C-2400)

14
15 THE COURT: Good morning, Mr. Negus, Mr. Kochis,
16 everybody.

17 Mr. Cooper is present with counsel, all counsel.

18 We were to have a new witness this morning.

19 MR. KOCHIS: That's correct, your Honor. There are
20 two procedural matters Mr. Negus and I believe should be
21 discussed before I call Dr. Sensabaugh. He is our first
22 witness this morning.

23 I believe Mr. Negus wants to take the lead in that.

24 MR. NEGUS: I would ask the Court to ask the
25 Sheriff's Department to remove the manacles from Mr. Cooper's
26 feet. Mr. Cooper has managed to get through approximately

0
0
7
9
7
1

1-2

1 60 or 70 court appearances without them.

2 THE COURT: I'm inclined to have that done. Is there
3 some reason we can't do that? Does the Sheriff's Department
4 have a reason?

5 MR. KOCHIS: I think they would like to speak to
6 that, your Honor. They are concerned.

7 DEPUTY McCARVILLE: I'm Senior Deputy McCarville.

8 The problem we have with this courthouse is we have
9 to bring him into the hallway to bring him into this
10 courtroom. There is no way we can go through the back.
11 We have to bring him up the stairs between 8 and 9 and bring
12 him here.

13 THE COURT: Let's take them off in the courtroom.

14 DEPUTY McCARVILLE: Okay.

15 MR. KOCHIS: There is a problem in transporting
16 Mr. Cooper into this courtroom. There is apparently no way
17 for the Sheriff's Office to bring Mr. Cooper down the hallway
18 in back of the courtroom and they have to bring him, I
19 believe, up the elevator and then out a short distance in
20 the hallway with the general public.

21 They are very concerned about that for his safety
22 and the safety of the public.

23 THE COURT: The first thing I discovered when I got
24 here this morning, unfortunately, is that that is the
25 circumstance here.

26 DEPUTY McCARVILLE: Yes, sir.

0
0
7
9
7
8

1 THE COURT: Anything further?

1-3 2 They are used to doing that. They have been doing
3 it here for many years. They have had more difficult cases
4 than this one as far as security is concerned.

5 DEPUTY McCARVILLE: No problem.

6 THE COURT: All right.

7 MR. KOCHIS: Dr. Sensabaugh we would call as our
8 first witness.

9 THE COURT: Come forward, sir, please.

10

11 G E O R G E F. S E N S A B A U G H, called as a
12 witness by and on behalf of the People, was duly
13 sworn, examined and testified as follows:

14 THE CLERK: You do solemnly swear that the testimony
15 you are about to give in this action now pending before the
16 Court shall be the truth, the whole truth and nothing but
17 the truth, so help you God?

18 THE WITNESS: I do.

19 THE CLERK: State your full name and spell your last
20 name, please.

21 THE WITNESS: George F. Sensabaugh,
22 S-e-n-s-a-b-a-u-g-h.

23 MR. KOCHIS: May I proceed, your Honor?

24 THE COURT: Yes, sir.

25 ///

26 ///

0
0
7
9
7
9

1-4

1 DIRECT EXAMINATION

2 BY MR. KOCHIS:

3 Q Dr. Sensabaugh, what is your current occupation or
4 profession?5 A I'm an associate professor of forensic science at the
6 University of California at Berkeley.

7 Q How long have you been so employed?

8 A I've been at the University of California since 1972 on
9 the faculty.10 Q And have you had any educational background that
11 qualifies you for that position?

12 A Yes.

13 Q What does that consist of?

14 A I received my doctor of criminology degree from Berkeley
15 in 1969. My area of work was forensic science.16 Q What type of classes do you currently teach at the
17 University?18 A I teach several classes. The most pertinent in this
19 particular case presumably would be an advanced course
20 in forensic biology, analysis of biological evidence
21 and materials.22 I also teach seminar courses dealing with forensic
23 science in general. I teach an undergraduate course
24 which deals with basic human biochemical genetics and
25 a graduate course dealing with methods and microbiology.

26 Q Between the time you received your doctor in criminology

0
0
7
9
8
0

1-5

1 in 1969 and today's date, did you have any research or
2 professional experience in this field?

3 A I had research experience. It wasn't forensic science
4 per se. I did a two-year post-doctoral in the chemistry
5 department at the University of California at San Diego,
6 and I did another year in research at the National
7 Institute for Medical Research in London, England.

8 Q Have you written any articles which have been received
9 for publication that dealt with the area of serology or
10 criminalistics?

11 A Yes.

12 Q A number of those articles?

13 A Yes.

14 Q Directing your attention to what has been marked for
15 identification as Exhibit 7, do you recognize what this
16 appears to be a copy of?

17 A Yes. It's my curriculum vitae.

18 Q And in that document, are there listed the approximately
19 90 articles that you have written which have been
20 accepted for publication in some type of scientific
21 journal?

22 A You are looking at the presentations that's 90. There
23 are 32 articles that have been published in journals.
24 There have been some 90 presentations before scientific
25 societies or scientific meetings.

26 Q Does that vitae also reflect the professional societies

0
0
7
9
8
1

1 that you belong to?

1-6 2 A Yes, it does.

3 Q Are you currently on any editorial board of any forensic
4 societies?

5 A Yes. I'm on the editorial board of the Journal of
6 Forensic Sciences which is the journal of the American
7 Academy of Forensic Sciences.

8 I'm also associate editor of the Journal of Forensic
9 Society, which is an English organization.

10 I have recently been placed on the editorial board of
11 the American Journal of Forensic Medicine and Pathology.

12 Q What do your duties on those editorial boards consist of?

13 A Principally of refereeing articles. When papers are
14 submitted for publication, they are reviewed by two or
15 more referees who review the papers for the suitability
16 for publication. The members of the editorial boards
17 of the journals are the primary referees for articles
18 submitted to those journals.

19 Q Doctor, does the concept of serology have any application
20 in the forensic field?

21 A Yes, certainly in the analysis of blood evidence, semen
22 evidence, evidence of a physiological nature.

23 Q And have you testified in the past as an expert in
24 courts in this state on the area of serology?

25 A Yes.

26 Q Within your scientific community, within the community

007982

1-7

1 of forensic criminalists, is there a concept which is
2 recognized called the ABO blood group system?

3 A Yes.

4 Q And is that concept recognized in sciences other than
5 the science of criminology?

6 A Oh, certainly.

7 Q And does that essentially hold, that particular concept,
8 that everybody has a particular type of ABO blood group
9 in the blood in their body?

10 A Yes.

11 Q Are there essentially four main blood types within that
12 system?

13 A Yes.

14 Q What would those be?

15 A A, B, O and AB.

16 Q And is it accepted within your community that these
17 various blood types are inherited genetically?

18 A Yes.

19 Q And furthermore, they remain constant throughout the
20 lifetime of a particular person?

21 A Yes.

22 Q Likewise, are there methods within your community that
23 are accepted as valid and reliable means of typing,
24 for example, a sample of whole blood, to determine what
25 the ABO blood type is?

26 A Yes. And not just within our community. It's one of

007983

1-8

1 the basic foundations of blood banking. ✓

2 Q Within your community, is there any particular definition
3 attached to the two terms I have previously used, those
4 being validity and reliability?

5 A Validity, you said?

6 Q Validity and reliability. For example, does the term
7 "reliability" have any meaning within the scientific
8 context?

9 A Reliable means that you can repeat something and get the
10 same answer.

11 Q And validity would mean what within the scientific
12 context?

13 A That the concept has some reality, the same as it would
14 mean in any other context.

15 Q Returning to the whole blood sample for a moment, is
16 the agglutination technique a technique that's accepted
17 in your community as a valid and reliable means to
18 analyze a sample of whole blood to determine the ABO
19 blood type of that blood?

20 A Yes, it's one of the standard procedures. It's also one
21 of the standard procedures in basic genetic studies where
22 blood typing is done.

23 Q Within your community, Doctor, when one is referring to
24 blood which is dry, is the term used "bloodstain"?

25 A Yes.

26 Q Are there, within your community, methods accepted as

007984

1-9

1 a valid, reliable means for analyzing a bloodstain to
2 determine the ABO content of that stain?

3 A Yes.

4 Q Would two of those be absorption-elution and lattes
5 test?

6 A Yes.

7 Q Is it possible for you to briefly describe what the
8 absorption-elution tests consist of?

9 A Yes. The absorption-elution test works as follows.
10 If you have a bloodstain or a piece of blood on a
11 fabric or something of that sort and you add to that a
12 solution containing antibody, antibody against the
13 appropriate blood type, if the bloodstain is of the
14 same type as the antibody, then the antibody will be
15 absorbed onto the blood stain glass, the absorption
16 step, then the stain is washed very thoroughly to remove
17 any known specifically binding antibody. Then the stain
18 which has antibody is heated and the heating releases
19 the bound antibody and you do a agglutination test to
20 determine whether you have released antibody.

21 If the blood stain is of the appropriate type --
22 that is, if the blood stain contains that ABO type that
23 the antibody recognizes -- then you will get a positive
24 test.

25 If, on the other hand, the blood stain is of a
26 different type that does not have the ABO blood group

8
0
7
9
8
5

1-10

1 antigen that the antibody recognizes, then there will
2 be no antibody found and, accordingly, no antibody
3 released in the elution step to be detected.

4 Q Is it likewise possible for you to articulate briefly
5 the method employed in the last one?

6 A Yes. People who are blood group O, for example, possess
7 in their blood plasma antibodies against, that recognize
8 A antigens and B antigens. People who are blood group B
9 contain antibodies against A antigens. People who are
10 blood group A have antibodies against B. People who
11 are blood group AB do not have any of these antibodies.

12 The Lattes test attests the presence of those
13 antibodies. The stain is solubilized and then the stain
14 extract is tested for the presence of agglutinating
15 antibody.

16 Q Are these both tests that you yourself performed in the
17 past on blood stains to determine the ABO blood type?

18 A Yes.

19 Q Is it possible for you to estimate approximately how
20 many times you have participated in such a test?

21 A I'm not sure that I would want to hazard a guess. Most
22 of my use of these is in the form of teaching people
23 how to do it. It's done in a classroom context and
24 some number of times per year over the last ten years
25 or so.

26 Q And are both of these methods accepted as valid,

0
0
7
9
8
6

1 reliable means within your community to type a bloodstain
1-11 2 for its ABO type?

3 A Yes.

4 Q Likewise, is there a concept which is accepted in your
5 community that relates to serology of a person being
6 either a secretor or nonsecretor?

7 A Yes.

8 (No omissions.)

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

007987

1 Q And the definition of a person who is a secretor would
2 be what?

3 A A person who is a secretor has soluble ABO blood group
4 substances in their secretions.

5 Q And would an example of such a secretion be, for example,
6 saliva and semen?

7 A Yes. Thus, if a person is blood Group A and they are a
8 secretor, they will have blood Group A substances
9 present in their saliva and semen.

10 Q And then would a non-secretor be a person who either
11 does not secrete those antigens in their blood fluids
12 or secretes them to a much less extent?

13 A The basic definition of a secretor is someone who does
14 not secrete. And for saliva, that applies. There have
15 been some suggestions that people who are non-secretors
16 may secrete very low levels of ABO substance in their
17 semen, but those are in some contention.

18 Q Likewise, is there what is recognized in your community
19 a concept called the Lewis blood group system or Lewis
20 type?

21 A Yes.

22 Q Is there any relationship that's accepted within your
23 community to exist between a certain type of Lewis blood
24 group person and whether or not that person is going to
25 be an ABO secretor or non-secretor?

26 A Yes.

0
0
7
1
9
8
8

1 Q What is the relationship?

2 A If a person is a non-secretor, if you test the red cells
3 for Lewis, they will be Lewis a. If they are a secretor,
4 they will be Lewis b.

5 Q Likewise, is it possible to test whole blood looking for
6 the Lewis types to make a determination as to whether
7 or not a person is a secretor or non-secretor?

8 A Yes. You do this by testing the red cells for Lewis a and
9 b antigens.

10 Q Is the microcapillary tube test a test that is recognized
11 in your community as a valid and reliable means to
12 analyze a whole blood sample to determine the Lewis type
13 to in turn determine whether or not someone is a secretor?

14 A Yes, it's one of several.

15 Q Likewise, are there tests that can be performed on the
16 other body fluids -- for example, a semen stain or a
17 saliva stain -- to determine if the person who deposited
18 that stain is a secretor or not?

19 A There are, but it is a more indirect route of testing.

20 Q Well, starting, first, let's start first with semen. Is
21 there a test that can be employed on a semen stain to
22 reach a determination as to whether or not the person
23 who deposited that stain is an ABO secretor or non-
24 secretor?

25 A If you test the stain and you find ABO blood group
26 substances, then you know that the person is a secretor.

0
0
7
9
8
9

1 Q What type of test could be performed on someone who is
2 an ABO secretor to give you that result?

3 A That would be agglutination-inhibition test. You would
4 be testing for the presence of the soluble substances
5 in the semen.

6 Q And if you perform that test on the semen stain from a
7 non-secretor, would you then have to perform an
8 additional test or could you just do the absorption
9 agglutination-inhibition?

10 A It would be wise to do an additional test. If you've
11 got a negative test, then there are two possible
12 explanations. One explanation is that the semen sample
13 originated from a non-secretor and there were no
14 substances there to begin with. The second possibility
15 is that there were substances there to begin with, but
16 for one reason or another those substances have
17 become undetectable. So one really in order to say that
18 this -- a particular sample came from a non-secretor,
19 one would have to distinguish between those latter two
20 alternatives.

21 Q Would one such additional test that could be performed
22 be the absorption-elution test?

23 A Yes. The absorption-elution test would detect antigen
24 on the cellular material in the stain, the sperm and
25 other cellular debris. And if you found antigen on the
26 cellular material but failed to find antigen in the

0
0
7
9
9
0

1 soluble part of the stain, then that would be indicative
2 of a non-secretor.

3 Q Could you likewise test for the Lewis system on semen
4 stain to get an indication as to whether or not a
5 person was a secretor?

6 A You can. There are several published papers on the use
7 of Lewis in that regard. The amount of material in the
8 stain would have to be reasonably concentrated, because
9 the amount of Lewis substances in the stain, in semen,
10 is not nearly as high as the amount of ABO substances in
11 semen.

12 Q Could you describe briefly for us the agglutination
13 technique you would perform on a semen stain to determine
14 whether or not initially someone was a secretor?

15 A You mean the agglutination-inhibition?

16 Q Yes.

17 A Yes. The basic principle of this test is to mix
18 specific agglutinating antibody at a low titer so that
19 there is just enough antibody present to agglutinate the
20 red cells, to mix some of this antibody with an extract
21 from the stain material. If there is soluble substance
22 present in the stain, the soluble antigens will react
23 with the antibody and effectively neutralize the antibody.
24 Then when after some period of time you add indicator
25 red cells of an appropriate type, if the antibody had
26 been neutralized -- that is, if it is reacted with

0
0
7
9
9
1

1 soluble substance -- then there will be no agglutination
2 of the red cells.

3 If on the other hand soluble substance is absent
4 or present at very low levels, there will remain
5 agglutinating antibody and the agglutinating antibody
6 will agglutinate the indicator red cells.

7 Q Doctor, directing your attention again to a stain, is
8 there or are there accepted methods within your field
9 to test a stain to determine at least presumptively
10 whether that stain is a semen stain or stain from some
11 other body fluid?

12 A Yes.

13 Q For example, is one of the presumptive tests that is
14 recognized in your community the test for acid phosphatase
15 in the stain itself?

16 A Yes.

17 Q And is there a name that is used in your community for
18 that particular type of test?

19 A The acid phosphatase test.

20 Q Can you also do a follow-up check on that test by
21 looking at the stain underneath a microscope to determine
22 the presence of sperm?

23 A Yes, indeed. That is the definitive test for semen,
24 since sperm is found in no other body fluid.

25 Q With saliva, are there presumptive tests that are used
26 on a stain to determine whether or not it may be in the

007992

1 form of saliva or from some other body fluid or other
2 substance?

3 A Yes. The test there is for an enzyme that is present
4 in saliva at very high levels. The name of the enzyme
5 is amylase.

6 Q If you find amylase in a stain, is that conclusive
7 proof that it is in fact saliva or is that simply a
8 presumptive test?

9 A No. That would be presumptive, although the amount of
10 amylase that one finds would enter into the weight of
11 one's presumption. The amount of amylase in saliva is
12 incredibly high, and if one found incredibly high
13 levels, then that would be taken as very strong evidence
14 of saliva. If one found moderate levels, that would be
15 less weighty evidence for the presence of saliva. This
16 is also predicated on a knowledge of other fluids in
17 which amylase appears at any reasonable level.

18 Q Doctor, if a stain is analyzed, suspected saliva stain
19 is analyzed, and, let's say, a high concentration of
20 amylase is found -- and I'm trying to recall if I mis-
21 spoke myself.

22 If a saliva stain is analyzed and you find high
23 concentration of amylase, are there then tests you can
24 perform on the stain to determine if a person is a
25 secretor or non-secretor?

26 A One would test by the agglutination-inhibition in exactly

007993

1 the same way. If one finds the presence or if one finds
2 secreted substances present in the stain extract, then
3 the person is a secretor. If on the other hand secreted
4 substances are not found, then the person is either a
5 non-secretor or there were secreted substances there and
6 they for one reason or another are not detectable.

7 Q Would then you have to perform a follow-up test?

8 A One could actually do the same kind of thing that one
9 can also do for semen, which I did not mention earlier.
10 I'll explain for saliva first.

11 If one found such high levels of amylase present in
12 a stain, then knowing how much blood group substance is
13 present in saliva, and we do know, have an idea how much
14 blood group substance is present in saliva, one could
15 infer that this could not be a saliva stain that contained
16 blood group substance at an undetectable level. One can
17 do the same thing with semen stain, in fact, that if by
18 testing the acid phosphatase activity, if we find very
19 high levels of acid phosphatase, because we know how
20 much blood group substance is ordinarily present in
21 semen, we can distinguish between the possibility of a
22 low level, low to undetectable level blood group substance,
23 we can distinguish that possibility from there having
24 been no blood group substance there to begin with.

25 Did that come across clearly?

26 2 Clearly is a relative concept. I don't know how to

0
0
7
9
9
4

1 answer that.

2 Is it accepted within your community that these
3 various ABO blood types occur with a certain frequency
4 within a given population?

5 A Yes.

6 Q In fact, have studies been done to bear that out?

7 A Oh, yes, yes. There are extensive studies on the
8 distribution of ABO blood types in various populations.

9 Q Likewise, have studies been done as to the occurrence
10 of secretors versus non-secretors in a given population?

11 A Yes, somewhat less extensive, but some studies have been
12 done.

13 Q And the techniques that you have described earlier, for
14 example, to determine the ABO type of whole blood and
15 blood stains, is that something that has been in use in
16 your community only recently or for some period of time?

17 A The ABO type in stains, you said?

18 Q Yes.

19 A It's been in use for at least 20 years.

20 Q Are there genetic markers other than the ABO system which
21 manifest themselves in the blood system?

22 A Yes.

23 Q And is an example of those enzymes and serum proteins?

24 A Yes.

25 Q Is it accepted within your community, within your
26 scientific community, that there are various enzyme types

0007995

1 and serum protein types which exist, for example, in the
2 blood of all of us?

3 A That is correct.

4 Q Is it further accepted in your community that within
5 a specific enzyme type -- for example, PGM or EsD --
6 that there are different PGM and EsD enzyme types?

7 A Yes.

8 Q And have there been studies about tests that are used
9 to determine the presence of a particular enzyme in a
10 bloodstain?

11 A You mean the determination of a particular type?

12 Q Particular type.

13 A Yes.

14 Q Is electrophoresis such a test?

15 A It's the principal tool that is used for the analysis of
16 the enzyme and protein genetic markers.

17 Q And basically what does the electrophoretic test consist
18 of?

19 A The genetic markers are characterized by specific charge
20 states. Two different types of a given enzyme will have
21 a different electric charge, so if one places the protein
22 in an electric field, the proteins will move in the
23 electric field at a rate that corresponds to the charge
24 they have, on the electric charge they have on them.
25 And because two types -- if two types have different
26 charges, they will move to different positions in the

8
8
7
9
9
6

1 electric field. And so one recognizes the types by the
2 pattern that is obtained by the marker in the electric
3 field.

4 (No omissions.)

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

007997

3-1

1 Q In the laboratory, does that take place by using
2 typically a glass plate, for example?

3 A The electrophoresis is done on some medium which may be
4 supported on a glass plate or on a sheet of plastic.

5 Q And is the medium typically some type of gel?

6 A It's usually a gel, although other media can be used
7 effectively.

8 Q Are standards and stains then placed in the gel which is
9 actually on top of the glass plate?

10 A That's correct.

11 Q And then is an electric current run through the gel?

12 A That's correct. You take your extract and your standards
13 and you pick them up on pieces of filter paper or on
14 threads and either lay them on top of the gel or insert
15 them in slots on the gel. Then you apply the electric
16 field and the markers migrate off of the threads or off
17 of the filter paper through the gel at some rate, and
18 then, at the end of the electrophoretic run which has
19 been the type which is determined empirically, you turn
20 off the current and then stain the gel to determine the
21 location of the particular marker in which you are
22 interested.

23 Q Now, Doctor, approximately how many different types of
24 enzymes and serum proteins have been found in the blood,
25 for example?

26 A Well, over 50 and approaching a hundred, I would guess.

007998

3-2

1 I have a table of them somewhere, but I haven't counted
2 them. I don't remember the exact number in the table.

3 It runs three pages long and that's what I do remember.

4 Q Is every enzyme which has been discovered used in your
5 community to type or distinguish blood stains?

6 A No. No. Of the genetic markers that are known, which
7 I said, the number is somewhere between 50 and a hundred,
8 perhaps only a dozen to 20 have proven sufficiently
9 robust to be used in the forensic context.

10 What I mean by robust is that the marker has to
11 survive in the stain material in a form which allows it
12 to be typed without ambiguity.

13 Q Now, how, in your particular field, how do you use
14 forensic serology to go about determining which
15 particular enzyme is the suitable field to use in?
16 Do you do it by chance or alphabetical order or test it?

17 A No. Usually it starts off when someone publishes a
18 paper saying that a new genetic marker has been found,
19 so the people in the Crime Laboratory or people in some
20 crime laboratories will read the paper, they will buy
21 the appropriate reagents to do the test, they will try
22 it out. And if they can get the marker to type cleanly
23 off of fresh blood samples, then they will prepare some
24 sample stains and they will see whether the marker
25 survives in the stains.

26 Some markers, when you prepare stains, the marker

007999

3-3

1 simply will lose activity. Some markers, when you put
2 them into stains, become -- they give unclear patterns,
3 ambiguous patterns. Those markers would be rejected.
4 The markers that give clear typing results would be
5 accepted for further work.

6 The second stage would be, then, the preparation of
7 a number of stains, storing them under different
8 conditions for different periods of time, testing them
9 in a blind way. And if, at the end of that testing,
10 mistakes have not been made -- that is, somebody knows
11 what the types are but the analyst who does the analysis
12 does not know what the types are -- if the analyst, in
13 making his or her typing calls, is correct all the time,
14 then the test and the marker are considered sufficiently
15 reliable to introduce into case work.

16 Q So for us laymen, in this two-step process, the first
17 step is essentially some sort of test to determine if a
18 particular enzyme type will manifest itself clearly?

19 A Yes. Feasibility study. Find out whether it's feasible,
20 whether this is a feasible marker to work with.

21 The second stage would be the reliability trials.

22 Q Would that consist of exposing various stains, for
23 example, to differences maybe in age, heat, allowing
24 time to pass and then having people who aren't aware
25 of that genetic makeup analyze the stain?

26 A The people who don't know what the answers are analyze

0
0
0
0
0
0

3-4

1 the stain and then they see whether the answers they
2 come up with are the correct answers.

3 It's just like taking a test. When you take a test,
4 you don't know, if you haven't studied, you don't know
5 what the answers are. If you have studied, you put down
6 the answers you think are correct.

7 There is one who knows what the answers are who sits
8 in judgment and decides whether or not you have given
9 the correct answers.

10 And so basically, the trial testing is that kind,
11 that blind testing is that kind of process.

12 Q From this two-step process, you whittle down the number
13 of known enzymes into those that can be reliably typed?

14 A That's correct.

15 Q Directing your attention to one of the charts which is
16 behind you on the board, directly behind you, and for
17 this hearing, I had marked for identification as K-1,
18 are you able to read, for example, on the line that says
19 "Group I" and it says, I believe, PGM and and EsD, are
20 you able to read that portion of the chart?

21 A Yes.

22 Q Now, are the items EsD and PGM, are they examples of
23 two types of enzymes that have passed this two-prong
24 test within your community?

25 A Yes.

26 Q Are they enzymes that your community recognizes as being

0
0
0
0
0
1

3-5

1 typed by this procedure called electrophoresis?

2 A Yes.

3 Q Would an agarose/starch gel be an acceptable medium to
4 use in an electrophoretic analysis to determine these
5 types of enzymes?

6 A Yes. That's one of several that have been used
7 successfully and reliably.

8 Q Directing your attention to the chart, the buffer that's
9 listed on that particular chart, would that be an
10 acceptable buffer, at least recognized in your community
11 as an acceptable buffer to use in electrophoretic run
12 to determine the enzyme types?

13 A Yes. Basically, that was one of the original buffers
14 developed by human geneticists to determine
15 phosphoglucomutase.

16 Q Likewise, would 7.4 be an acceptable pH with which to
17 conduct that electrophoretic run?

18 A Yes. Once again, that was the standard's original
19 condition.

20 Q Likewise, finally, the stains that appear on the chart
21 to the far left of the Group I under "staining", would
22 that be appropriate stains to use in conducting an
23 electrophoretic run to determine PGM and EsD?

24 A Yes, those are the stains used by everyone who types for
25 these particular enzymes.

26 Q Are there any controls that are used in the

0080002

3-6

1 electrophoretic run to allow an analyst to determine
2 if the system is functioning properly?

3 A Yes. You run standards, samples of known type.

4 Q How would that function for a serologist as a control?

5 A Well, if the known type does not give you a good pattern,
6 a prototypic pattern, then you know that something was
7 wrong, went wrong somewhere in the analytical system.
8 It doesn't happen very often, but it occasionally
9 happens.

10 Q When you are talking about patterns, would the pattern
11 of the unknown itself also operate in any fashion as a
12 control?

13 A If the pattern -- Yes, if the pattern of the unknown
14 deviates significantly from the kinds of patterns that
15 one expects to see, then that would serve as a control.
16 There are, when you do these, use these typing
17 methods, there are expected patterns that one expects
18 to see. You are one type, you manifest one pattern, or
19 you are another type, you manifest another pattern.
20 If the pattern that shows up on the plate is
21 different than any of the expected patterns, then an
22 alarm bell rings that something is not right.

23 Q Doctor, when you are talking about patterns, I wonder
24 if I could direct your attention to another exhibit
25 which is behind you on the board. And I believe that
26 one has been marked for identification as K-3.

0
0
8
0
0
3

3-7

1 Can you read that?

2 A Yes.

3 Q Is it K-3?

4 A Yes.

5 Q For example, the diagram of the different types of
6 PGM, the standard PGM types, can you see those?

7 A Yes.

8 Q And, for example, if you use a standard in electrophoretic
9 run, a 2-1 standard, and you have also had a sample of
10 blood that was not known to you and you got expressions
11 similar to the 2-1 on that diagram, would that first be
12 an indication from the control that the run had been
13 conducted properly?

14 A Yes.

15 Q And likewise, if your unknown blood manifested a similar
16 pattern, would that also operate as a similar control
17 that the run had been conducted properly?

18 A If your unknown blood gave a 2-1 pattern?

19 Q Right.

20 A Yes.

21 Q Now, I take it there are things that can affect the
22 electrophoretic run, for example heat and voltage.
23 Would that be true?

24 A Yes. If the voltage is too high, a great deal of heat
25 may be generated. If the heat is not sufficiently
26 removed, then you may get heating of the gel which would

008004

3-8

1 lead at its minimum level to no serious problem to at
2 a more distortion of the bands to the most extreme, the
3 gel would burn up.

4 Q If there was a heat problem such as the one you just
5 described, would you expect that problem to manifest
6 itself on the standards?

7 A Yes.

8 Q How so?

9 A If the standard showed up giving a very blurry pattern
10 or if the pattern given on the gel was not uniform across
11 the gel but smeared or skewed to one side or another,
12 that would be an indication of a heat problem.

13 Q Doctor, directing your attention back to the chart
14 directly behind you, the K-1, are the three enzymes that
15 appear adjacent to the Group II, the EAP, ADA and AK, are
16 those all examples of enzymes which have met this
17 two-prong criteria about validity in terms of being
18 able to type from the bloodstain?

19 A Yes.

20 Q Is that accepted by serologists other than yourself
21 within your community?

22 A Yes.

23 Q Is the use of a starch gel accepted in your community
24 as a valid and reliable means to conduct an
25 electrophoretic run on those three enzyme types to
26 determine their type?

0
0
8
0
0
5

3-9

1 A Yes.

2 Q And likewise, the other information that appears on the
3 chart next to Group II, specifically the buffer that's
4 listed on the chart, the pH that's used, and the staining,
5 types of stains that are used, do those all appear to be
6 appropriate procedures to employ?

7 A Yes. They are fairly standard. These procedures are,
8 for the most part, no different than procedures that are
9 used by a biochemical geneticist who is doing nonforensic
10 work.

11 Q With electrophoresis I assume that it's proper to conduct
12 a run to determine simply a single enzyme type, for
13 example PGM; is that true?

14 A What do you mean by a single enzyme type?

15 Q Is it proper to analyze a bloodstain on a plate in an
16 electrophoretic run just searching for the PGM enzyme
17 type?

18 A It depends upon the context. If the PGM is the only
19 enzyme you are interested in, yes, that's appropriate.
20 On the other hand, if you are interested in getting
21 a general picture of the genetic types of the individual,
22 then you may want to stain a single gel for other
23 enzymes as well, if you know the other enzymes will work.

24 In the process of doing population genetic studies,
25 the electrophoretic run is a rather limiting process.

26 You can only analyze as many samples as you can get

0
0
8
0
0
6

3-10

1 through your electrophoretic analysis. The staining
2 step doesn't take much time. The electrophoresis step
3 takes a long time.

4 Very early on in genetic studies, people found
5 buffer systems that would work well for several different
6 enzyme markers, so one could then run a fairly thick gel
7 and slice the gel into a number of slices and stain each
8 slice for a different enzyme and that way you could get
9 as many as five or six markers off of a single
10 electrophoretic run.

11 Q I think you may have answered the next question I was
12 going to ask but I take it within your community it's
13 accepted as valid and reliable to use a multisystem and
14 look for more than one enzyme type?

15 A Yes.

16 Q And are you aware of a person by the name of Brian
17 Wraxall?

18 A Yes.

19 Q And has he designed what is called the multisystem which
20 is employed in the country in various crime laboratories
21 to run more than one enzyme type off the same one?

22 A Yes.

23 Q Likewise, directing your attention again to K-3 --
24 sorry -- K-1, are transferrin and Gc examples of proteins
25 that have met the two-step criteria as far as reliability?

26 A Yes.

0
0
0
0
0
0
7

3-11

1 Q Is an agarose gel accepted as a reliable means of
2 conducting electrophoretic runs to determine the Gc
3 protein?

4 A It's the standard procedure that is used, yes, or one
5 of the standard procedures.

6 Q Likewise, on K-1, moving along the line of Group III,
7 are the buffers, the pH and the staining technique that
8 appears on the chart proper procedures to employ in
9 conducting a run for those serum proteins?

10 A Yes. Those are fairly routine procedures.

11 (No omissions)

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

0
0
8
0
0
8

1 Q And are peptidase A and CA II also examples of enzymes
2 which are accepted in your community as enzymes which
3 have met this two-stage process and they in fact can
4 be reliably typed?

5 A Yes.

6 Q Is electrophoresis recognized in your community as the
7 method to make that determination?

8 A Yes.

9 Q On the chart, the gel that's reflected there, the
10 agarose as well as the buffer, the pH and the staining,
11 are those acceptable procedures to employ in an electro-
12 phoretic run where you're looking for peptidase A and
13 CA II enzymes?

14 A Yes.

15 Q Also, is haptoglobin an enzyme that your community
16 recognizes can be reliably typed?

17 A Yes.

18 Q Would an acrylamide gel in electrophoresis be accepted,
19 is it accepted in your community as a valid and reliable
20 means to make that determination?

21 A Yes.

22 Q And on the chart are the buffers, the pH and the
23 staining technique that is used, accepted as the
24 proper method to conduct that type of run?

25 A Yes.

26 Q Now, are there changes that can occur in blood -- perhaps

0
0
0
0
0
9

1 I can use the word wet stain and dry stain changes --
2 can they affect the ability of the serologist to later
3 type using electrophoresis the enzyme types of that
4 particular blood?

5 A Could you rephrase that, please? I think what you're
6 trying to say -- correct me if I'm wrong -- is are there
7 things that can happen in bloodstains that cause blood-
8 stains to become untypable?

9 Q That's a better question. What would your answer be if
10 I asked it?

11 A There are.

12 Q For example, can bacteria affect a bloodstain?

13 A Bacteria do, yes.

14 Q If bacteria affected a bloodstain, would you expect the
15 presence of the bacteria to manifest itself in an
16 electrophoretic run?

17 A It might manifest itself several ways. If I may have
18 the latitude to answer the question broadly, since now
19 we're moving into lecture territory, to have bacterial
20 overgrowth of a bloodstain requires that the bloodstain
be maintained in the liquid state for some period of time.

22 Q I was going to stop you just for a minute. For example,
23 as a forensic serologist, are there steps you can take
24 to arrest the possibility of this occurring?

25 A Drying it and refrigeration. We dry food to keep it, to
26 protect it against bacterial growth. We freeze our food

0
0
8
0
1
0

1 to protect it against bacterial contamination.

2 Q Likewise, if a drop of blood is deposited, for example,
3 on a surface such as a wall and kept away from moisture
4 and later collected in a dry form and frozen, would that
5 lessen the chance of any bacterial contamination at that
6 state?

7 A Well, during the time that the stain is in the dry state
8 and frozen, bacteria will not be a problem. Any problem
9 that might occur would be during the time that the stain
10 is in the liquid state on the wall. We have some idea of
11 how long it takes blood spots to dry under normal
12 conditions. And so we could come up with a reasonable
13 estimate of the amount of time the blood was in the
14 liquid state. And with some outer limits as to what
15 was possible and within that time we could make a rough
16 estimate of how much of an effect bacterial contamination
17 might be.

18 In any case, if there was significant bacterial
19 contamination, you would see it when you were looking at
20 the stain. Really significant bacterial contamination
21 would show up in the form of a discolored stain; for
22 example, stain that has mold on it, and we've all seen
23 moldy food in our refrigerator. Well, moldy bloodstains
24 look about the same way. You know, when you have a
25 contamination problem of that sort it's painfully
26 apparent.

0
0
0
0
1

1 If you don't have that level of bacterial contamina-
2 tion or fungal contamination, then chances are it won't
3 have an effect on your stain, on the analysis of your
4 stain material. In other words, you have to have a
5 pretty fair amount of contamination in order to have a
6 significant effect on the analysis on the markers in
7 the stain.

8 Q If I could stop you for a moment so I can digest some of
9 that.

10 Do you mean to say by some of that two things,
11 doctor: First of all, the existence of contamination in
12 and of itself may not affect the markers, in terms of
13 their manifestations; and second, if bacteria does affect
14 the stain, for example, adversely, that's going to
15 manifest itself in the electrophoretic run?

16 A Well, it will usually manifest itself just looking at
17 the stain visually. Now, when you do the analyses, the
18 electrophoretic analyses, and for that matter the ABO
19 typing analyses, one, particularly the electrophoretic
20 analyses, if you have bacterial contamination in a stain
21 that is significant enough to affect the stain, you
22 will usually see some bacterial representatives or
23 bacterial forms and enzymes present.

24 So, for example, with PGM, with bacterial contamination,
25 stains that have been subjected to or have undergone
26 bacterial, significant bacterial contamination, one often

0
0
8
0
1
2

1 sees a PGM band that is far removed from the bands that
2 one does the typing on. If you see a band like that,
3 that's a sure signal that you have a problem.

4 Q Doctor, I wonder if you could move to the blank piece
5 of paper that we'll later have marked, I guess, as
6 K-8 for identification. And would it be possible for
7 you to demonstrate, for example, with PGM on the left,
8 perhaps, what a normal PGM₁ type would look like and
9 then what a PGM₁ type that has been subject to contamina-
10 tion by way of bacteria might appear?

11 A Well, the ones that have been looked at thus far, if we
12 put the mark of origin here, and using those same
13 patterns, a PGM Type 1 is represented by two bands.
14 There are another series of bands which are found in all
15 individuals and which do not show genetic variation.
16 These non-variable bands are due to the PGM₂ locus.
17 It's a separate enzyme system, but it has the same
18 enzyme activity. And then when bacterial bands have been
19 seen, they tend to be up here.

20 THE COURT: Go to the other side if you will, please.

21 THE WITNESS: I'm sorry.

22 Q (BY MR. KOCHIS:) Could you draw a line between the
23 bands that appear in a normal stain and the bands that
24 appear in a bacterial stain?

25 A Anywhere in there.

26 Q And that would obviously manifest itself in the plate

8
0
8
0
1
3

1 during an electrophoretic run?

2 A Yes. Now, this doesn't mean this would have to be where
3 those bands would show up. This is where the bands,
4 the contamination bands that I have seen, have shown up.
5 They could show up in other places on the plate as well.
6 But the point is that as soon as you start seeing
7 funny bands, that is, bands in places where bands should
8 not be, that is a signal that something is not quite
9 right.

10 Q Now, have you written literature about the various
11 things that can occur that will affect electrophoretic
12 analysis of blood?

13 A Some, yes.

14 Q For example, did you essentially author a chapter in, I
15 believe, Saferstein's handbook?

16 A Yes.

17 Q And was that essentially to be used by serologists as
18 listing the various signposts that they are to look for
19 when they analyze a particular stain to determine if the
20 stain has been affected by a wet or a dry state change?

21 A Well, it describes the basic biochemistry of some of the
22 marker or outlines the basic biochemistry of some of the
23 markers and describes some of the kinds of things that
24 one can see when things are going wrong, yes.

25 Q Now, does the fact that dry or wet state changes may occur,
26 does that mean in any fashion that bloodstains cannot be

00014

1 | reliably typed to determine their enzyme type?

2 A No, because the consequence of the changes that do occur,
3 as we have gone through here for the bacterial contamina-
4 tion, the consequences are that the patterns are
5 sufficiently altered to signal that something is not
6 right. And if the patterns are altered, then one relies
7 on one's knowledge of the marker itself, the biochemistry
8 of the marker, one's experience as to whether one is
9 actually going to make a call, or whether one will
10 withdraw, be agnostic, and say I don't want to commit on
11 that particular pattern.

12 Q Doctor, do enzymes lose their activity with time?

13 A Yes.

14 Q And when an enzyme loses its activity, will it eventually
15 discontinue to express itself?

16 A The pattern disappears.

17 Q And if an enzyme, for example, these various enzyme
18 types we've discussed, degrades to that point, is what
19 practically happens that you simply won't get anything
20 on the plate?

21 A That's right. The markers that we know have two basic
22 patterns of decay. One basic pattern of decay is the
23 activity just disappears, it fades away. And it fades
24 away evenly, so that one type does not fade away more
25 rapidly than another type.

26 The second pattern of decay is that we have

008015

1 degeneration of additional electrophoretic bands. We
2 know where those electrophoretic bands ought to go.
3 The patterns are rather well defined patterns. And at
4 some point in the decay process, the pattern becomes
5 sufficiently altered that the analyst says I don't want
6 to make a call.

7 Q So that type of change also manifests itself on the
8 plate?

9 A That's right.

10 Q Now, is it also possible to conduct an electrophoretic
11 analysis of stains other than blood to determine enzyme
12 type; specifically here I'm referring to semen?

13 A Well, PGM and peptidase A being two principal semen
14 markers.

15 Q Is it recognized in your community that both those
16 enzymes can be reliably typed through the use of electro-
17 phoresis to determine, for example, the PGM and peptidase
18 A enzyme type of a particular semen stain?

19 A Yes.

20 MR. KOCHIS: I have nothing further on direct.

21 THE COURT: Why don't we take the morning recess,
22 about 15 minutes. We'll be in recess.

23 (Recess.)

24 (No omissions.)

25

26

008016

1 THE COURT: Doctor, return to the stand, please.

5-1 2 You are still under oath to tell the truth.

3 Mr. Negus, you may cross-examine.

4

5 CROSS-EXAMINATION

6 BY MR. NEGUS:

7 Q In determining whether or not these different enzymes
8 that you have been talking about are accepted in the
9 scientific community as reliable, does publication play
10 any role in that?

11 A Yes.

12 Q What role does that play?

13 A Well, when someone has gone through the kind of testing
14 that I described, they would generally publish their
15 results. Either that or they will present their results
16 at a meeting. And from one or the other, they will pass
17 the words to the rest of the community that they feel
18 that these tests are sufficiently reliable to be used
19 in case work.

20 Q Generally, does the process of getting the word around
21 by publication take some time after initial discovery?

22 A Yes.

23 Q Is there ever occasions where somebody thinks something
24 is reliable and publishes it and then later they find
25 out that it wasn't?

26 A Yes, that can occur.

0
0
0
0
1
7

5-2

1 Q For example, at one point in time immunoelectrophoresis
2 process or technique was thought to be reliable; is
3 that correct?

4 A It was published and I wouldn't really say it subsequently
5 proved to be unreliable so much as there are other
6 techniques that give more definitive results or are
7 easier to interpret and have supplanted the
8 immunoelectrophoresis technique.

9 Q This is unreliable?

10 A I don't really harbor any such suspicion. I wouldn't
11 use it because I think it's a pain to do, and the number
12 of no-calls, I would judge, would be considerably higher
13 than the number of no-calls using the acrylamide gel
14 techniques that are used now.

15 Q Generally, how wide a circle of serologists generally
16 hear about these things ~~before~~ they are accepted as
17 reliable? I mean, just those in California or all over
18 the world?

19 A Well, I'm not sure exactly what you are getting at, but
20 there is a worldwide community. There are groups in
21 Japan that do work on the markers. There are groups
22 in Western Europe, groups in England and in this country.
23 There are several laboratories in each one of those
24 places that have tended to be the ones who do most of
25 the testing work, and they will present their papers
26 either through publication or at appropriate meetings

0
0
8
0
1
8

5-3

1 and pass the word along.

2 Q For example, three of the main ones would be London,
3 California and Tokyo; is that correct?

4 A I'm not really very familiar with the Japanese work.
5 Certainly work has been done, a substantial amount of
6 work has been done in London. There has been some work
7 by several groups in Germany, the location of which I
8 cannot define for you because they publish in German.
9 I read the abstracts, but not the papers.

10 Q Well, the PGM, the different techniques for PGM have
11 been widely distributed throughout all the different
12 countries; is that correct?

13 A Yes.

14 Q And how many of the particular proteins that are on
15 that list behind you have been the subject of published
16 articles describing the technique that is on the board
17 in the various scientific journals?

18 A You mean how many publications have used these particular,
19 or how many publications have these particular techniques
20 been used in?

21 Q How many of the enzymes have been described in any
22 scientific publication with the techniques that are
23 described on the board?

24 A I would have to go back. To answer that definitively,
25 I would have to go back and look at the specific articles
26 and see what techniques have been used. The techniques

008019

5-4

1 that have been used or most of the publications
2 regarding phosphoglucomutase have used the same buffer
3 system, same pH. They have been done, for the most part,
4 on stain, not on starch areas.

5 There have been some in which agarose has been
6 used by itself. With regard to the acid phosphatase,
7 that is one of the fairly standard procedures that has
8 been used quite a lot in biochemical genetics -- that is,
9 using the citrate phosphate system at that particular
10 pH or at a pH 5-8 or 5-9. It has a little bit of
11 difference in the way the patterns appear, but not a
12 significant difference.

13 Q Have there been publications in scientific literature
14 describing the use of agarose gel to get transferrin
15 results in a forensic context?

16 A In the forensic context, I'm not sure there has been.
17 In the basic genetic context, I know there have been
18 papers presented in that regard. I know the people who
19 have presented the papers haven't published that work.

20 Q Basically, the general description of the technique
21 used to group transferrin in Group Specific Component
22 together were presented in 1979, a paper by Ed Blake
23 to the California Association of Criminalists?

24 A The name is right and the date sounds about right.

25 Q Then he also published, also presented in 1983 a couple
26 of papers on certain problems that could develop using

0
0
0
0
2
0

1 transferrin?

5-5 2 A Yes.

3 Q Those again were in the California Association of
4 Criminalists?

5 A Right. And then they also have been presented at one
6 other forum, a forensic science meeting, the name of
7 which I don't remember.

8 Then I presented them for Ed at a Canadian meeting
9 a year ago last August or last August. I think it was
10 last August.

11 Q Is it fair to say that a technique has been generally
12 accepted in the forensic science community if its only
13 presentation has been in groups, to certain groups at
14 certain meetings and hasn't been published in a scientific
15 journal?

16 A That has both a yes and no answer to it. If I may
17 elaborate, if the technique that is presented poses
18 nothing particularly novel -- that is, it's a
19 modification of an existing technique or existing
20 technology -- then that would be considered support for
21 the reliability of it.

22 On the other hand, if the technique were entirely
23 a novel technique, something that had no precedent,
24 had not been done before in that particular way, it
25 would not be considered really established as reliable;
26 rather, it would be considered as provocative and

0
0
0
0
0
2

5-6

1 something that other labs would want to take back and
2 try out for themselves.

3 Q In the reliability of these various techniques, is it
4 necessary that an analyst be generally familiar with
5 this literature in the field?

6 A Yes, and basically with the biochemical genetics
7 literature as well.

8 Q For example, you mentioned to Mr. Kochis a review
9 article that you presented for Mr. Saferstein in the
10 Handbook of Forensic Sciences.

11 Would an analyst need to know at least the material
12 summarized in that article in order to be able to reliably
13 make a typing?

14 A I should think that an analyst ought to be familiar with
15 that material. That was the rationale for bringing it
16 together in that review article.

17 Q Could ignorance of that material cause unreliability?

18 A I'm not sure exactly how to answer that question because
19 there you are getting not at the question of reliability
20 of the marker or the reliability of the method, but,
21 rather, the competency of the analyst. And if the
22 analyst is not familiar with that material, then I would
23 say that the analyst might have a greater chance of
24 making a mistake than the analyst that was familiar with
25 the material. *acceptable*

26 Q Some techniques are less acceptable to analyst

0
0
8
0
2
2

5-7

1 misinterpretation than others in the field of forensic
2 science; is that correct?

3 A As in any field, yes.

4 Q The gaschromatograph, when you analyze with it, that's
5 reasonably free of misinterpretation; is that correct?

6 A It ought to be, yes.

7 Q Whereas something like neutron activation analysis, at
8 the other end, takes a considerable amount of skill just
9 to even operate the machine, correct?

10 A Yes. It is really at two levels. One, the technical
11 skill to prepare the samples and operate the machine,
12 and, secondly, to interpret what the results mean.

13 Q Between the gaschromatograph for ethanol and activation
14 analysis, where does the electrophoresis fall?

15 A Somewhere in the middle. The technology of doing the
16 electrophoresis is not particularly difficult. Indeed,
17 in most chemical laboratories where the electrophoresis
18 is done, or blood banking laboratories where it's done,
19 it's not uncommonly done by technicians who have no
20 particular training in any fundamental biochemistry or
21 genetics, but they do know how to prepare samples in a
22 standard way, how to put the samples onto a gel, how to
23 plug in the machine and do the analysis.

24 So at the technical level, there is not necessarily
25 any great expert involved in interpreting what the
26 patterns mean, if the patterns are unambiguous.

0
0
8
0
2
3

5-8

1 Generally, there is no particular special expertise
2 that's needed. It's when the patterns begin to approach
3 the boundary of the ambiguous that one needs to have the
4 special knowledge.

5 Q At that level, does one need as much special knowledge
6 to interpret neutron activation analysis?

7 A Not being an expert in neutron activation analysis, I'm
8 not sure that I could judge. Certainly it would be a
9 different kind of expertise.

10 Q What kind of expertise? What different things go into
11 the expertise that you need for serology?

12 A I think you ought to have a basic knowledge of genetics,
13 particularly biochemical genetics, a background that
14 includes serology, some chemistry. I would say the
15 biochemical genetics would be the main thing.

16 Q And that kind of background would be a sine qua non for
17 interpreting results where the patterns may be a little
18 ambiguous; is that correct?

19 A Yes. I would say that would be fair to say, yes.

20 I should add that's not the kind of biochemical
21 genetics that's done at the research level. It would
22 be somewhat more basic or a lower level biochemical
23 genetics than that. We don't expect the people doing
24 this kind of work to be carving away at the frontiers
25 of science, and they don't have to have that kind of
26 knowledge.

000024

5-9

1 Q And in applying that knowledge, you spoke of the knowledge
2 between the -- of the differences that can occur to these
3 various proteins in a wet environment versus a dry
4 environment?

5 A Yes.

6 Q And when we are talking about -- when you are talking
7 about wet and dry, wet can be a, not necessarily immersed
8 in water, but can be present at a certain relative
9 humidity; is that correct?

10 A Yes.

11 Q Have you published some work as to approximately where
12 the difference between wet and dry becomes significant
13 in terms of developing humidity?

14 A Yes. Somewhere between, say, roughly 60 percent and
15 80 percent of relative humidity. There is no hard bound
16 line between wet and dry in this context, so that 60 to
17 80 percent is about right.

18 Q Somewhere between 60 and 80 percent relative humidity
19 the kind of changes that you start seeing the proteins
20 and no longer those characteristics of the dry state
21 but the characteristics of the wet state?

22 A Above 80 percent, yes.

23 Q And you published that information in the journal called
24 Isozymes; is that correct?

25 A It's a serial. It's not a journal. It's a book of
26 review articles that appears every year.

008025

1 Q What are the different -- well, do all the enzymes
2 undergo the same wet state changes or proteins?

3 A No, no. It would depend upon the chemistry of the
4 enzymes themselves.

5 Q By the way, all the enzymes are proteins but not all the
6 proteins are enzymes; is that correct?

7 A That is correct, yes.

8 Q Is there a microorganism which is present in the human
9 body called neuraminidase?

10 A No, it's not a microorganism, but it's an enzyme that
11 is present in the human body. And it can come from
12 microbial contamination. It is also an ~~endogenous~~
13 enzyme.

14 Q Is it found inside red blood cells?

15 A Neuraminidase? Not to my knowledge. Low levels of it
16 may be present in blood plasma, but they would be very
17 low levels. For biological reasons, it would have to
18 be present at very low levels.

19 Q In people who have died, does the neuraminidase level
20 sometimes increase?

21 A Yes.

22 Q Does it at that point in time get inside the red cells?

23 A No, it wouldn't get into the red cells, but as the red
24 cells would break open it would -- the contents of the
25 red cells might be exposed to the neuraminidase.

26 Q Does neuraminidase affect any of the red cell enzymes in

0
0
8
0
2
6

1 producing any sort of changes in it?

2 A It should not have an effect on the red cell enzymes,
3 because -- and this is a basic biological issue -- the
4 enzymes that are present within the cytoplasma of the
5 red cell, that is, inside the red cell, do not have
6 attached to them sialic acid, which is the substrate of
7 neuraminidase. That is, it is the sialic acid that the
8 neuraminidase acts on. Proteins that are present in
9 the red cell membrane, proteins that are present in the
10 blood plasma, very many of those do have sialic acid on
11 them and they may be affected, may be modified by the
12 action of neuraminidase.

13 Q Is acid phosphatase, that is acid phosphatase from the
14 red blood cells, is that affected by it?

15 A No.

16 Q The three serum proteins that were mentioned to you on
17 Exhibit K-1, transferrin and haptoglobin, both have
18 sialic acid; is that correct?

19 A Transferrin certainly does, yes. Haptoglobin does, and
20 Gc does also.

21 Q Gc only has it, however, in some of its phenotypes;
22 is that correct?

23 A It is more prominent in one phenotype than in another
24 phenotype, yes.

25 Q So the effect in terms of at least the kinds of typing
26 that we're talking about, neuraminidase, on these various

0
0
8
0
2
7

1 proteins, is only going to be a significant problem for
2 transferrin, haptoglobin and some of the phenotypes of
3 Gc?

4 A Well, depends on what you mean by a problem. Actually
5 with Gc, unless you have a rare type, it's not going to
6 be a problem, because the patterns are sufficiently
7 distinct that there should be no confusion there, even
8 if neuraminidase has acted.

9 The same applies actually for haptoglobin. If the
10 tests are done properly, then the patterns ought to be
11 sufficiently distinct so that you would not make a
12 mistake with regard to haptoglobin type.

13 With regard to transferrin, if you know what you're
14 looking for or know what to look for, then there shouldn't
15 be a problem there either.

16 Q Perhaps I shouldn't used the word significant problem.
17 The neuraminidase is only going to affect the electro-
18 phoretic appearance of those three proteins?

19 A Yes, yes.

20 Q The key to it not being a problem is that you know what
21 you're looking for; is that right?

22 A Yes.

23 MR. KOCHIS: Your Honor, do we have any control at
24 all over whatever it is that's making that noise?

25 THE COURT: I don't know.

26 DEPUTY SPEARS: I don't know what it is either.

0
0
0
0
2
8

1 THE COURT: It's something I think we can live with
2 here. I don't know where it's coming from.

3 MR. NEGUS: I suspect from past experience in this
4 building it's the air conditioner.

5 THE COURT: It is annoying, but we can overcome it.
6 You might check, bailiff, just to see if you can get more
7 information on it. We'll talk about it later.

8 Go ahead.

9 Q (BY MR. NEGUS:) When the blood is in a dried state as
10 in the situation with the blood dropping, for example,
11 that Mr. Kochis mentioned, is neuraminidase going to be
12 a problem for even transferrin, Gc, or haptoglobin?

13 A Not in the dry state. Enzymes don't work in the dry
14 state. The main effects of bacterial contamination have
15 to do with bacterial enzymes chewing up the material
16 that the bacteria are contaminating. In the dry state
17 the enzymes don't work.

18 Q Another one of the changes that can occur in the wet
19 state is a process called deamidation; is that correct?

20 A Yes.

21 Q Is there a difference between the word deamidation and
22 the word deamination?

23 A Deamidation, I think, was the term that you are looking
24 for. It is the removal of amide group.

25 Q What's deamination mean?

26 A Deamination would be the removal of the amine group.

008029

1 Q In organic chemistry, amide groups are the various amino
2 acids that makeup the proteins?

3 A The amine or amide?

4 Q With a "d."

5 A Amide. Two amino acids have amide type changes, yes,
6 have amide groups.

7 Q Is the deamidation a process that's only a problem in
8 the wet state?

9 A Principally a problem in the wet state. The reaction,
10 the chemical reaction requires water in order to go.

11 Q So unless, for example, in blood drop, unless that drop
12 was wet at some point in its history for a very
13 significant period of time, deamidation shouldn't be a
14 problem; is that correct?

15 A Well, that and also again it depends upon the chemistry
16 of the protein or the chemistry of the enzyme. Some
17 enzymes, proteins, have labile amide groups. So it's
18 only going to be if you have a labile amide group that
19 deamidation is likely to be a problem. So it's dictated
20 deamination as a problem is dictated by the chemistry of
21 the protein.

22 Q Now, of those which are the proteins that -- let's just
23 assume on that list that -- well, I'll back up.
24 Glyoxalase 1 is a protein that can be typed according
25 to Group I; is that correct?

26 A You can use that typing electrophoretic system, yes.

0
0
8
0
3
0

1 Q At no extra cost as it were you can get a glyoxalase I
2 result at the same time as you're doing the PGM and the
3 EsD?

4 A Yes.

5 Q Doing that doesn't affect the reliability of PGM or
6 EsD results if you use that particular system; is that
7 correct?

8 A If it's done properly, if should not.

9 Q As far as the Group IV system is concerned, there's
10 another protein called G6PD; is that correct?

11 A Yes.

12 Q And that protein can likewise be determined using that
13 system for Group IV at no extra cost?

14 A It would seem reasonable. That's not the condition that
15 I use for glucose 6 phosphate dehydrogenase. There's no
16 reason why that system could not be used for G6PD.

17 Q You could likewise using that same system also get
18 hemoglobin if there's some sort of variant in the hemo-
19 globin; is that correct?

20 A Yes. Actually you can pick up hemoglobin variance on
21 most of those systems.

22 Q Essentially if it's possible?

23 A Yes.

24 Q So adding them, if you would, glyoxalase and the G6PD
25 to that list up there of proteins, which of those in the
26 wet state undergo deamidation changes?

0
0
8
0
3

1 A That's not a question that can be answered, because
2 although we have inferred from the nature of changes
3 that occur that deamidation may be responsible for some
4 of the deterioration phenomena that we see, it has not
5 been proven chemically that deamidation is in fact
6 responsible for it.

7 Q Well, the phenomena one sees as far as from which one
8 infers a possible deamidation is a shift towards the
9 anode of the bands?

10 A That is correct, a one-step shift, yes.

11 Q What's a one-step shift?

12 A Well, a one-step shift would be like the difference
13 between these two bands in PGM.

14 Q Between what's been labeled as the little a and the
15 little c band?

16 A Right, on the Type I or little b and the little d band
17 on the Type II.

18 Q Which enzymes and proteins undergo that particular shift?

19 A Undergo a one-step type shift?

20 Q Right.

21 A PGM does, adenylate kinase does, esterase D does, ADA
22 does for a different reason, peptidase A does, if I
23 remember correctly. I'll qualify peptidase A, because
24 I don't remember that. It's not an enzyme with which
25 I've done extensive work. However, I think if you'll
26 look in the table of the isozymes book, I have a list

008032

1 which indicates which enzymes undergo a deterioration
2 with formation of anodal bands.

3 Q In that particular book, you don't mention peptidase A.
4 Is it possible, however, that even because of your lack
5 of work in the field you may not know it and it does?

6 A I was relying upon published accounts and statements from
7 other people in preparation of that table, so I would
8 guess that it would not. It would be in Volume 11.

9 Q It's cut out. I'm showing you a cut-out Table 6.

10 A Right. That would be the table.

11 Q So the peptidase A would not undergo --

12 A It would be simple loss of activity, yes.

13 Q You mentioned that the ADA undergoes this one step and
14 that will change for a different reason. Why is that?

15 A It forms a mixed disulfide with oxidized glutathione.

16 Q Is that something that happens only in the wet state?

17 A With regard to ADA specifically, I can't answer. The
18 chemistry of it says yes, because the same thing occurs
19 with red cell acid phosphatase. And as far as we have
20 been able to do tests, the formation of the anodal bands
21 with oxidized glutathione occurs in wet state material,
22 but not on dry state material.

23 Q Basically in order to get these changes, especially, it
24 adds a negative charge that makes it go further?

25 A Yes, but it's reversible, because by treating with a
26 reducing agent you can remove the additional negative

0
0
0
0
3
3

1 charge and make it go back to its original position.

2 Q I'll get to that. But in order for that to occur, do you
3 have to have something of a chemical structure of the
4 particular protein, you have to have a sulfidryl group
5 that can undergo this reaction with glutathione; is that
6 correct?

7 A That's correct.

8 Q How many different enzymes can undergo that reaction?

9 A Well, some number. I don't know what the number would
10 be. Most proteins, red cell enzymes, or many red cell
11 enzymes, have sulfide groups, but only a few that I can
12 think of; ADA and acid phosphatase being the two that
13 immediately come to mind actually undergo that kind of
14 shift.

15 Q Now, if you used a reducing agent such as Cleland's reagent
16 or mercaptoethanol that will reverse it; correct?

17 A Correct.

18 Q Does it reverse it completely?

19 A Substantially completely. There may be a little bit of
20 a residue of unconverted material, but substantially it
21 is completely reversed.

22 Q Does anything for any of the proteins that we've been
23 talking about which produces an anodal shift actually
24 occur in the body when the body is alive?

25 A Yes. Deamidation reactions occur in the body in the
26 normal course of things, and those proteins that are

0
0
8
0
3
4

1 susceptible of deamidation reactions. Aldolase as I
2 recall is one that is susceptible to a deamidation
3 reaction in the body. The anodal shift does occur in
4 the body as well. PGM is an excellent example of that.

5 Q So basically what you have in the PGM is two sets of
6 bands, one of which is caused by the actual PGM protein
7 itself, another one is caused by the deamidation of that
8 protein after it's created in the cell?

9 A Well, possibly caused by deamidation, yes. One is the
10 primary gene product, and the other one is a secondary
11 modification product of the primary gene product.

12 (No omissions.)

13
14
15
16
17
18
19
20
21
22
23
24
25
26

008035

7-1

1 Q What other reaction can change the presentation of
2 the phenotype on the electrophoretic plate that occur
3 in a wet state besides the bacteria which you mentioned,
4 the formation of mixed desulfides and deamidation?

5 A You could have neuraminidase from bacteria. You could
6 have proteolytic enzymes from bacteria. Even sometimes
7 they chew up other protein.

8 Q What happens when you have -- How does that appear when
9 proteolytic enzymes are chewing them?

10 A Most enzymes, once they are nibbled at, they die. When
11 they are nibbled at, they lose their enzyme activity
12 so you don't see them at all.

13 Q Do the different phenotypes die due to proteolytic
14 changes at differential rates or do they all go on the
15 same?

16 A For the markers referred to here, as far as we know,
17 they all die at the same rate.

18 Q Do those proteolytic changes occur in the dry state?

19 A No. Again, enzyme reaction doesn't really grow in dry
20 state material.

21 Q When blood is shed, does the body naturally produce
22 anticoagulants?

23 A No, it doesn't.

24 Q Excuse me. Coagulants.

25 A Yes, it does.

26 Q And are those dissolved into the blood itself?

8
0
8
0
3
6

7-2

1 A They are present in the blood to begin with in inactive
2 form. I would -- Well, I will let you follow your line
3 of questioning.

4 Q When they become active, do they remain active solely in
5 a wet state?

6 A Yes.

7 Q Do they have any effects which may alter the presentation
8 of phenotypes on the electrophoretic plate?

9 A Not that we have been able to ascertain. As the blood
10 dries and it's in the wet state as well, the red cell
11 remains intact, so the enzymes that are present inside
12 the red cell are not really in contact with the
13 coagulation enzymes that are outside of the red cell.

14 The plasma protein markers are in contact with those
15 enzymes, in the studies that have been done, since the
16 markers that are used survive in bloodstains that have
17 come from coagulated blood, by inference we can say that
18 those markers have not been affected.

19 There are a number of other markers which don't
20 survive that, so by inference they may be affected by
21 the coagulation in time.

22 Q Have you been doing studies in that particular area?

23 A I have, yes.

24 Q And what about in laboratory samples where anticoagulants
25 are added? Do the anticoagulants essentially stop this
26 coagulation reaction from occurring?

0
0
8
0
3
7

7-3

1 A Yes.

2 Q Does that have any effect on the presentation of
3 phenotype?4 A Well, it depends on how the sample is stored while in
5 the anticoagulant, and it depends on what anticoagulant
6 is used.7 There are some anticoagulants that inhibit enzyme
8 activity. That's the way they exhibit their
9 anticoagulant effect. They can have an effect.10 I think sodium flouride is one example, that that's
11 not commonly used for collection of samples for forensic
12 purposes, at least.13 Other anticoagulants may have no effect or may even
14 promote the stability of the enzymes. Drawing blood
15 into ACD, acid citrate dextrose, which is essentially
16 the same solution that it is drawn into for storage in
17 the blood bank, preserves the red blood cell and the
18 enzymes in the cell.

19 Q What about EDTA?

20 A EDTA can have an effect on enzymes that require metals
21 and that is why red cells that are drawn into EDTA are
22 usually washed before the analyses are done and the
23 electrophoresis is done in a medium that contains some
24 of the metals.

25 Q Is peptidase an example for such enzyme?

26 A Yes.

000000

7-4

1 Q Are there any other wet state changes that we haven't
2 mentioned that affect the presentation?

3 A Not that I can think of at the moment. Do you have some
4 for me?

5 Q Let me just check my list.
6 What are the different changes that an enzyme or
7 protein can undergo in a dry state?

8 A Most of the wet state changes will not go in a dry
9 state. What can happen in a dry state phenomenologically
10 is that of a loss of solubility of the sample and that is
11 believed to be a consequence of cross-linking of the
12 protein material through a dehydration reaction.

13 Q When proteins are cross-linked, how does that affect
14 their appearance on the electrophoretic plate?

15 A It would not because they would not extract. If they
16 are sufficiently cross-linked, they will not extract
17 into solution, so they can't get into the gel. They
18 would not electrophorese.

19 Q Can proteins also connect with lipids in a dry state?

20 A Yes, they can. Not at a very rapid rate, but they can
21 through radical reactions.
22 Some of the cross-linking of the proteins may also
23 be promoted by radical reaction.

24 Q When the proteins cross-link with lipids, how does that
25 appear on the electrophoretic plate?

26 A I don't know that we can say anything definitively about

008039

7-5

1 that because people have not generated chemically
2 defined lipid cross-linked enzymes to see how they
3 would look on an electrophoresis plate.

4 Q Is there any reason to suspect that they might cause a
5 smearing?

6 A Yes. That's the most plausible expectation.

7 Q Why would that be?

8 A You would have a rather ambiguous change in the charge
9 on the protein -- that is, it would not be a step-like
10 change, but, rather, a blurring of charge.

11 You would also have a blurring of size. Instead of
12 having molecules that were of a defined size as they are
13 in the native state, by the attachment of the lipid, you
14 would change the way the protein -- you would change
15 the size of the protein and the way the protein
16 interacts with the water in the surrounding environment.

17 Q How does that affect its electrophoretic mobility?

18 A Smearing, I think, would be the best explanation.

19 Q Why is the change in size -- Is it the weight we are
20 talking about, or what parts of the protein are exposed
21 to the outside, as it were?

22 A Both. It depends upon the medium that one uses. If
23 you have a medium that sieves and the starch is such
24 a medium or acrylamide gels are such a medium, then the
25 protein's molecular weight will affect its mobility in
26 something like that.

0
0
8
0
4
0

1 In either case, either with sieving media or
2 nonsieving media, how the molecule interacts with this
3 particular environment, with its aqueous environment,
4 may have an effect on its mobility. And this is fairly
5 technical, I should say.

6 Q The agarose/starch gel that Mr. Wraxall uses in his
7 bloodstain analysis system, with one percent agarose
8 and one percent starch, that is designed, is it not, to
9 minimize the sieving effect in order to promote the
10 resolution of the enzymes?

11 A The concentration of starch in there is not sufficient
12 to have a sieving effect.

13 THE COURT: It appears we will go into the afternoon
14 session.

15 MR. NEGUS: That's a fair statement, your Honor.

16 THE COURT: Break now?

17 MR. NEGUS: Sure.

18 THE COURT: We will return at 1:30. Let's return
19 at that time.

20 You must return at that time.

21 (Whereupon the noon recess was taken.)

22 (No omissions)

23

24

25

26

008041

1 SAN BERNARDINO, CALIFORNIA; MONDAY, APRIL 30, 1984; 1:32 P.M.

2 DEPARTMENT NO. 10 HON. RICHARD C. GARNER, JUDGE

3 (Appearances as heretofore noted.)

4

5 THE COURT: Please continue.

6

7 CROSS-EXAMINATION (Resumed)

8 BY MR. NEGUS:

9 Q On the electrophoretic plate, we mentioned that it's
10 possible, at least, that streaking could be a result of
11 the lipids --

12 A Interacting.

13 Q -- cross linking with proteins. Are there any other
14 causes of streaking on an electrophoretic plate besides
15 the lipids and the proteins getting together?

16 A None that I can think of really formally. We tend to
17 say things like grunge associated with a protein, and
18 that's why it streaked. That's not really a definitive
19 chemical explanation, but that's about the best that
20 we can do.

21 Q Is there any particular evidence that this streaking is
22 caused by bacteria appearing electrophoretically on the
23 plate?

24 A No, there is no experimental evidence which would
25 demonstrate that bacteria are a cause of streaking.
26 Bacteria could contribute some of this grunge, but that

0
0
0
0
0
4
2

1 is a guess, not something that has been experimentally
2 established.

3 Q Is that as good a guess as the lipids cross linking with
4 the proteins?

5 A I would say that probably there's a lot more available
6 grunge factor, if you will, present in the blood to begin
7 with. You don't really need to introduce bacteria into
8 it. Certainly streaking is seen on bloodstains which
9 are not significantly contaminated with bacteria.

10 Q The one area where there's at least some evidence that
11 indirectly bacteria may cause streaking is in the
12 neuraminidase and influence on haptoglobin; is that
13 correct?

14 A I don't know that neuraminidase particularly causes
15 streaking with the haptoglobin. Neuraminidase does have
16 an effect on haptoglobin in that it changes the charge
17 state of the haptoglobin.

18 Q Doesn't it change the charge state so that different
19 molecules of haptoglobin will sort of spread out and
20 cause what looks like a streak?

21 A It could, I suppose. I would attribute streaking with
22 haptoglobin to something else, I think.

23 Q Well, with the haptoglobin technique that is used on
24 that chart, the gradient acrylamide gel, would you expect
25 to get something else that you would attribute it to
26 would be the decomposition of hemoglobin?

0
0
0
0
4
3

1 A The decomposition of hemoglobin, the interaction of
2 hemoglobin with red cell membrane material.

3 Q Does that problem occur with the gradient acrylamide
4 gel?

5 A I don't know the extent to which it would occur with the
6 gradient acrylamide gel. There is a procedure commonly
7 used to minimize the problem, and that procedure is to
8 extract the bloodstain extract with chloroform, which
9 takes a lot of the bound lipid, not covalently bound,
10 but the lipid grunge, if you will, out of the system.

11 Q That's because the chloroform will make the hemoglobin
12 less soluble and sort of precipitate it out?

13 A Well, the chloroform makes the hemoglobin less soluble,
14 yes. The chloroform also will extract out a lot of the
15 lipid material. This is something that works empirically
16 and the people who use it attribute it to one thing or
17 another, but it works.

18 Q Nobody is quite sure exactly why, but for sure --

19 A There's precedent for both of the explanations I gave you.
20 Chloroform extraction is commonly used in protein
21 purification to selectively precipitate out hemoglobin.
22 Chloroform extraction is also routinely used in lipid
23 analysis to remove lipids from protein solutions.

24 Q Can an improperly prepared gel cause streaking?

25 A Improperly prepared in what respect?

26 Q Can you have any just sort of too heated, for example --

0
0
8
0
4
4

1 well, when you're making the gel you bring it almost to a
2 boil in preparation of when you're mixing the gel and the
3 starch or the agarose in with the buffer; is that correct?

4 A Actually you do bring it to a boil.

5 Q In that particular process can you overheat it and burn
6 it and cause --

7 A You can overcook it. I don't know whether it would cause
8 streaking or not, because I'm not sure that I have ever
9 overcooked it long enough to bring that effect about.

10 Q Does a high salt content of your sample, in your sample,
11 cause streaking?

12 A It can cause streaking. It can also cause distortion
13 of the gel.

14 Q In what other way besides streaking?

15 A You mean how does it cause distortion of the gel?

16 Q Yes. First of all, what does it look like?

17 A When you have a high salt content, you tend to have the
18 electrophoretic zones warped around the high salt zone.

19 Q And what causes that?

20 A You have a higher conductivity where the salt is, so you
21 have instead of a more or less continuous electrophoretic
22 electric field within the gel, you have a discontinuity
23 where the high salt is.

24 Q Does bacteria cause the type of anodal shift, the same
25 type of anodal shift that you experience with the
26 process that you suspect is deamidation?

0
0
0
0
4
5

1 A You mean could the presence of bacteria in a sample
2 affect such a shift?

3 Q Yes.

4 A I wouldn't say that it has really been documented one
5 way or another.

6 Q Could the presence of bacteria cause oxidation products?

7 A Probably not. Oxidation, the formation of oxidation
8 products would be basically independent of bacteria in
9 terms of their chemistry.

10 Q In a normal PGM run from a dry bloodstain, would you
11 expect to see equal intensity in the a, b, c, and d bands?

12 A It depends on the type that you're looking at. If you're
13 looking at a 2-1 type, then they would be roughly of
14 comparable intensity, yes, if it is from a bloodstain.
15 If it is from a semen stain, the patterns would be
16 somewhat different.

17 Q Why is that?

18 A Because the appearance of the PGM in blood is a little
19 bit different than the appearance of PGM in semen, the
20 appearance of PGM in fresh blood and fresh semen, to
21 start off with. And, say, take a PGM Type 1 as the
22 example, in normal red cells in fresh blood, the a band
23 and c band are of roughly common intensity. In semen
24 the a band is more intense than the c band.

25 Q That's because unlike the situation in the blood cells,
26 you don't get the same degree of changes from the

0
0
8
0
4
6

1 phenotype into the second deamidated substance?

2 A Well, we don't know if it's deamidated.

3 Q Suspectedly?

4 A Yes, of the primary form into a secondary form. It's
5 largely a factor of time. The life span of a red cell
6 is on the order of 100 days. So if you sample blood at
7 any particular point in time, the average red cell will
8 be something on the order of maybe 50 or 70 days. I'm
9 not sure what exactly it would be. In any case it's
10 not an adolescent red cell, nor is it a senile red cell.
11 It is probably a middle aged type red cell. And having
12 those two bands of roughly equal intensity is what you
13 see in nice middle aged red cells.

14 In semen, the enzyme is a much younger enzyme, more
15 like an adolescent enzyme, to keep the metaphor going.
16 And so more of it exists in the primary state than in
17 the secondary state.

18 Q In the dried red blood cell -- excuse me, dried red
19 bloodstain, will all of those 2-1 bands disappear at
20 the same rate?

21 A In a dried sample, yes, at approximately the same rate.
22 (No omissions.)

23

24

25

26

0
0
0
0
0
4
7

9-1

1 Q The what we call on the board there PGM₁ in its primary
2 state is actually two different chemicals; is that
3 correct? There are two different chemicals that it can
4 be?

5 A What do you mean by PGM₁ in its primary state?

6 Q The phenotype created that are labeled electric -- that
7 are labeled PGM₁ type, that can actually be two different
8 chemicals?

9 A Are you referring to the subtypes?

10 Q Yes.

11 A Yes. Okay. When in fact it shows up on conventional
12 electrophoresis as a single band, it can be separated
13 by other electrophoretic techniques into two bands.

14 Q And likewise the two can likewise be separated?

15 A Correct.

16 Q The reason for that would be the fact we are dealing with
17 four different alleles?

18 A Correct.

19 Q And the subtypes are referred to as plus 1, minus 1,
20 plus 2, minus 2 types?

21 A Right.

22 Q Does the 2 plus, the 1 plus and the 1 minus and the
23 2 minus, are they all equally stable?

24 A There is nothing, no real hard information on that.
25 There is some feeling that perhaps the minus bands
26 might be a little bit less stable than the plus bands,

8
8
8
8
8
8
8

9-2

1 but there is, to my knowledge, only one or two people
2 who have actually put that to the test and they haven't
3 found that to be the case.

4 So I would say that it's something of an open question.
5 It wouldn't hurt to have some additional scrutiny given
6 to it.

7 Q If the suspicions of some serologists that the pluses
8 last longer than the minuses is correct, could that
9 result in different rates of disappearance of the
10 2-1 depending upon whether you had a 2 plus, 1 minus
11 or 2 minus, 1 plus, or other combinations thereof?

12 A I don't follow exactly your other combinations thereof.

13 Q Those are the two I was thinking of.

14 A A sample that has a minus band in it, you are asking
15 whether --

16 Q Let's take a 2 plus, 1 minus.

17 A Okay.

18 Q If the suspicions of the serologist that there is this
19 difference between pluses and minuses is correct, could
20 that result in a situation in the dry blood cell where
21 with the 2 plus, 1 minus, the 2-1 ends up looking like
22 a 2?

23 A That would be a possibility, I think, but -- or
24 theoretical possibility, but at least insofar as the
25 conventional typing is done, there has been enough
26 testing of PGM involving type 2-1 samples such that

8
8
8
8
4
9

1 were this a significant problem, it would have shown up.

2 Q What about in a situation where you have a wet sample

3 with a 2 plus 1 minus, would that result in a 2-1

4 looking like a 2?

5 A I would say that was probably a more likely possibility

6 primarily because the pattern of deterioration or the

7 mechanism of deterioration, I think, is likely to occur

8 more rapidly in a wet state than in a dry state.

9 But, again, there has not been documentation that

10 I'm aware of that that's a particular problem. One can

11 look at it in the following way.

12 It's possible that the sun could rise in the west,

13 but no one has ever seen it, so I think that's not likely

14 to be the case. This doesn't have the assurance of the

15 sun rising in the west, when I say I don't think it's a

16 problem, but it has been looked at, this system has been

17 looked at by enough people over a long enough period of

18 time such that if it were really a significant problem,

19 someone should have noted it.

20 Q Is there any situation with PGMs where suspected

21 deamidation can cause a cathodal shift from the bands?

22 A Deamidation should not cause a cathodal shift. The

23 deamidation would result in increase in negative charge

24 and that would give you an anodal shift.

25 Q That's because the particular amino acids which you

26 call amides all have negative charges to them?

008050

9-4

1 A They do not have the negative charge, but when you remove
2 the amide group, they take on the charge.

3 Q And in electrophoresis jargon, the portion of the
4 plate which is more toward the origin when you are
5 running PGM's is called the lower side; is that correct?

6 A Usually, yes, except when one is doing acrylamide gels
7 because in acrylamide gels, the plate generally runs
8 down in the lower portion, the anode.

9 Q But in the system we are using up there for Group I, that
10 part-starch part-agarose gel and the lower part should be --

11 A You read it like you read a newspaper.

12 Q That's the way they always print the pictures in the book?

13 A That's correct, except when space is limited. Then they
14 print them sidewise.

15 Q Are there any of the enzymes that we have listed on the
16 board which have recognized typing problems so that
17 rules have had to be formulated about how to go about
18 typing?

19 A Yes. Acid phosphatase, red cell acid phosphatase.

20 Q Any others?

21 A PGM has rules. Actually all of them have rules of one
22 kind of another. For some of them, the rules are more
23 articulated than they are for others.

24 Q What are the rules for PGM?

25 A One of the rules of PGM is that you want to have the
26 b band and the c band well separated. If you have good

008051

9-5

1 separation, good resolution between the b band and the
2 c band -- that is, these two bands -- then you know that
3 you are not likely to make a mistake of confusing a
4 b band and a c band.

5 And I think that you can see from the illustration
6 that if the b band and the c band merge together, then a
7 type 1 can be confused possibly as a type 2-1.

8 Q Any other rules for that PGM?

9 A Some people, I think, apply the rule that unless the
10 a band and the b band are of at least comparable
11 intensity to the c band and d band, they will not make
12 a call.

13 Q Why is that?

14 A Because the a band and the b band is of lesser intensity,
15 which indicates that the anodal shift has taken place in
16 the sample that would generally be signaled by additional
17 anodal bands in the position anodal to the d position,
18 called a pseudo d band.

19 Q How far do you need to stain on the PGM in order to make
20 sure you pick up any bands anodal to the d band that
21 might be significant for typing?

22 A Well, you mean to apply the rule because it's not really
23 significant for typing?

24 Q Right.

25 A Except to the extent that this rule comes into play.
26 If you have good, healthy a bands and b bands, then you

000052

9-6

1 are okay. If you have a good, healthy b band, for
2 example, with no significant staining in the area of
3 the a band, then you would be disinclined to consider
4 it a 2-1 that possibly has deteriorated to look like a 2.

5 Q What rules exist for the esterase D?

6 A The esterase D shows anodal banding as well, and so the
7 rule, the main rule that applies there is looking at the
8 intensity of the bands that one sees.

9 And if I can illustrate from the figure, a type 1
10 develops anodal bands roughly in the same position as
11 where the secondary or where the hybrid bands are for
12 the type 2-1. So one has to look at the relative
13 intensities of these bands and compare them to what
14 one expects, the mind's eye picture, the prototypic
15 picture of what a 2-1 looks like.

16 Q And that's a pattern of intensities with relative order
17 of magnitude are 1:2:1?

18 A In the 2-1, it's a 1-2-1, although as the type 2-1
19 deteriorates, you lose a little bit on the 1 and get
20 a shifting toward the anode.

21 Q In other words, to make sure that you are calling it
22 correctly, unless you see that 1-2-1 pattern, they don't
23 call it?

24 A Or something that approximates the 1-2-1 pattern. In
25 the 1-2-1 pattern, this band is more intense. As the
26 pattern deteriorates, the anodal, over time, does appear

0
0
8
0
5
3

9-7

1 to deteriorate such that one of the secondary bands is
2 more intense than the primary bands.

3 Q Is there also a rule about resolution that some people
4 apply?

5 A For esterase D?

6 Q Yes.

7 A You want to have your bands well delineated. With the
8 multisystem, there is separation between the secondary
9 bands and the hybrid bands, so one would like to see them
10 separated as well.

11 Q And if they become diffuse, then it's considered, then,
12 not readable?

13 A If it's too diffuse, many analysts would not consider it
14 readable.

15 (No omissions.)

16

17

18

19

20

21

22

23

24

25

26

0
0
8
0
5
4

1 Q Do any of the bands in the esterase D inactivate at
2 faster rates than the others?

3 A Well, given the general shift that esterase D inactivates
4 through an anodal shift pattern, the slower band, the
5 band that is seen in the Type 1 pattern, or this band
6 in Type 2-1 pattern, would appear to be decayed or
7 rapidly decaying.

8 Q Is it possible that in the 2-1 pattern that the secondary
9 band would inactivate at a faster rate than either the
10 1 or the 3?

11 A What do you mean by secondary band?

12 Q The band in the middle.

13 A The hybrid band?

14 Q The band in the middle.

15 A The hybrid band.

16 Q Right.

17 A No. The hybrid band appears not to deteriorate faster
18 than the 1 or the 3 band.

19 Q In the acid phosphatase, what rules have been developed
20 by yourself and Mr. Wraxall to type acid phosphatase?

21 A Well, first you want to have adequate resolution. Acid
22 phosphatase isn't really illustrated there.

23 Q Would you like to go and --

24 A I would be willing to do so.

25 Q Why don't you do it -- yeah. The first chart that you
26 did this morning on direct, could you label that PGM?

0
0
8
0
5
5

1 A (The witness complies.)

2 Q Then if you would -- you've labeled PGM 1 to be from one
3 gene locus and the other one to be from the other gene
4 locus?

5 A Right, bacterial. That's what that's supposed to
6 represent.

7 Q At the top?

8 A Yes.

9 Q So if you could draw the patterns that you get in an
10 acid phosphatase.

11 A There's the six common phenotypes.

12 Q You were going to use that illustration why you need
13 good resolution.

14 A Okay. Want to have resolution between the fast b band
15 and the slow a band, up being the direction of migration.

16 Q Up being the more up it goes the faster it is?

17 A Towards the anode, yes.

18 Okay. So you run appropriate standards so that you
19 can make certain that you have good resolution there.
20 That's one consideration you would like to see. In
21 typing any sample that involves an a, you would like to
22 see the appearance of this minor band. And the reason
23 for that is that for both a types and b types, the
24 faster band appears to deteriorate at a more rapid rate
25 than the slower band, the reasons why being point of
26 biochemical controversy, which are not really relevant in

0
0
0
0
5
6

1 terms of the phenomenology. In any case, this band may
2 disappear before this band does.

3 Q The faster band disappear before the --

4 A The slower band. So if you hold off on making judgment,
5 say in a B A type sample, until you can see whether
6 anything shows up here in the slower a band position,
7 then you are not likely to make a mistake.

8 Q So the two rules essentially involve the use of the
9 proper standards in order to make sure you have resolution
10 and making sure you have slower bands as well as the
11 faster bands before you make any typing call?

12 A You would need another standard. You ought to have a
13 C B standard. The only way that Type B or Type C can be
14 distinguished is that the two types differ in staining
15 intensity of the bands, and because of the phenomenon
16 described over time, that the faster band tends to go up
17 more rapidly than the slower band, one can get a confusion
18 of B and C. This is well documented in the literature.
19 This is essentially a wet state reaction and it occurs
20 at the rate of 24 to 48 hours at body temperature in the
21 blood.

22 Q What then standards do you need to use in order to make
23 sure that you have a proper resolution on all the
24 different bands? Do you need three different ones?

25 A I like three. I like to use the A, B and C B. There's
26 another reason for having the C B on there, and this

008057

1 is if the plate heats up in the course of the run, then
2 your B pattern may look like a C B, your C B may look
3 like C. So by running those two standards on the plate,
4 you can tell whether you have had a heating problem.

5 Q Would just using a B A and a C B satisfy your criteria
6 as a standard?

7 A They would, but I prefer the other as a point of
8 preference.

9 Q Why is that? I mean, why do you -- what's the difference
10 between a B A and a common -- and then using a B and an
11 A separately?

12 A Well, the B A is a better standard in that you have a
13 comparison of these two, the mobility of these two bands
14 in the same track.

15 Q So you prefer to use B A rather than the A and B?

16 A No. I'm saying the B A would be superior with regard
17 to judging resolution.

18 Q Oh, okay.

19 A But the B and C B would be superior with regard to the
20 intensity problem.

21 Q So if you used the combination of B, B A, and C B, that
22 would be the best of all possible combinations?

23 A That would be a good combination, yes.

24 Q You mentioned problems that can be caused with acid
25 phosphatase of heating up during the course of a run.
26 Does that mean that just in the course of actually

0
0
8
0
5
8

1 analyzing the acid phosphatase you can create through
2 excessive heat some of the same wet state changes?

3 A Yes, or at least that is presumed to be the case. I'm
4 not sure that it has been documented in a hard scientific
5 way, but that is believed by most people in the field,
6 I think, to be a possibility.

7 Q That would explain getting wet stain type changes when
8 you actually have a dry stain that you're analyzing?

9 A Yes.

10 Q Are there any rules that have developed for the ADA?

11 A The principal one is, to be sure, and use a reducing
12 compound when you're doing the analysis.

13 Q That's to get rid of the mixed disulfides?

14 A Right.

15 Q Any others?

16 A To the extent of my knowledge, I am not aware of them.

17 Q Any other rules, any rules for AK?

18 A Yes. You look at the extent of anodal band formation
19 with adenylate kinase.

20 Q Why is that?

21 A Because the adenylate kinase, when it deteriorates, forms
22 an anodal band. In looking at this sample, the Type II
23 sample, the anodal band of the Type II, the deterioration
24 band of the Type II, is in the same position as the
25 Type I band.

26 You see this generally as a stack of bands, so you

888859

1 look at the extent to which you have that anodal band.
2 If you don't have very much anodal band, then you are
3 not concerned about the typing as the amount of anodal
4 banding builds up. If you have a suspected Type 2 or
5 Type 2-1 sample, then you become more and more cautious.

6 Obviously, for a Type 1 sample anodal bands are not
7 going to affect the general typing interpretation.

8 Q What rules do you use in interpreting transferrin?
9 A With transferrin, you look at the multiplicity of bands
10 that you see. The principal thing that you would be
11 concerned with with transferrin would be desialidation;
12 that is, the removal of sialic acid by neuraminidase.
13 And there you would see if neuraminidase has been active
14 on the protein. You would see cathodal bands. And any-
15 where from two to five bands would show up with your
16 transferrin stain.

17 Q Is it possible to eliminate those bands by treating the
18 whole sample with neuraminidase and shifting the whole
19 pattern to the cathode?

20 A It is, or in the cathodal direction, yes.

21 Q What typing rules do you use for Gc?

22 A Good resolution as always. Good resolution is the
23 necessary ingredient for all of the electrophoretic
24 typing. Beyond that, Gc typing is pretty straight
25 forward, pretty non-ambiguous.

26 There is the formation of an unusual kind of anodal

8
8
8
8
6
8

1 band with Gc, something that's not a one step away band,
2 but rather a block away, if you will, on the spatial
3 relation of the typing gel. That mirrors the standard
4 pattern and indeed one of my colleagues has suggested
5 that you just have to push Gc so that it all shows
6 up in the anodal position, and you can type it unambiguously
7 in the anodal position. That has not met the test of
8 reliability yet, but --

9 Q Generally, if you get this pattern and a block away from
10 Gc, it's not called?

11 A No. I wouldn't say that it's not called. It depends
12 upon how much you have in the standard band position,
13 what you see in the standard position.

14 Q Do you sometimes get a situation where the whole thing
15 is moved up a block as it were?

16 A Yes, yes, you do. And as my colleague says, when you
17 see that you can type it that way, but that has not yet
18 come into standard practice by the people in the field.

19 Q In applying all of the rules in order to make sure that
20 you have reliable results, is it critical that the
21 analyst be prepared to say that a particular electro-
22 phoretic run results in a -- is it important in order to
23 ensure reliability that the analyst be prepared to say
24 I can't type it if in fact there's any ambiguities?

25 A Yes, indeed. The most critical judgment to make is the
26 judgement that something is not typable.

0
0
8
8
6
!

1 Q And is it acceptable to say, well, it sort of looks like
2 that, and therefore it probably isn't, so I'm going to
3 call it, or should you just say I can't type it?

4 A Well, what people actually do, I can't speak for them.
5 But most people, if they err, they err to the side
6 of being conservative. They will not call plates or
7 samples which possibly could be called.

8 Q If they are calling ones that shouldn't be, then that
9 can affect their reliability?

10 A You're speaking of their reliability as an analyst now?

11 Q Yes.

12 A If they call ones that they should not be calling?

13 Q Right.

14 A Yes, they are running the risk of error.

15 Q What rules have developed for the typing of peptidase A?

16 A Peptidase A is not a marker that I can describe rules
17 for in great detail, because my laboratory has not done
18 very much with peptidase A at all, and I have not been
19 involved with the development of those rules.

20 Q What about CA II?

21 A CA II is pretty unambiguous. If you have good resolution
22 of your bands, then in my experience there is not a
23 problem with this typing.

24 (No omissions.)

25

26

0
0
8
0
6
2

11-1

1 Q Does CA II appear in semen?

2 A Not that I'm aware of.

3 Q If you were to, on semen, using the Group IV approach
4 on the diagram there and you got a result of CA II 1,
5 something you called the CA II 1, what would that be?

6 A I'm not entirely sure. It could, as I say -- As I
7 say, I don't know whether semen has carbonic anhydrase
8 in it. I have not done testing for it, so if carbonic
9 anhydrase is truly there, then I would say that it's
10 probably CA carbonic anhydrase type 1.

11 If, on the other hand, carbonic anhydrase should not
12 be there, then I would have a great deal of wonderment
13 as to what the carbonic anhydrase staining might be.

14 Q Are there any rules that have been developed for the
15 calling of haptoglobin in using the gradient acrylamide
16 gel?

17 A Some general rules. Because of the way haptoglobin is
18 stained, you would like the residual hemoglobin in your
19 sample to stain away from the haptoglobin bands region
20 so you do not have a large smear of hemoglobin that
21 smears your haptoglobin pattern.

22 Q By making sure of your range of gradients like 4 percent
23 to 30 percent?

24 A That's one of the approaches that's used. To look at
25 the electrophoresis that way, the hemoglobin, most of
26 the hemoglobin ends up migrating to a position that's

008063

separated from the haptoglobin band position.

11-2 2 Q Any other rules for haptoglobin?

3 A For haptoglobin typing, you ought to have good standards,
4 preferably have all three types of gel, although you can
5 get by with a 2, 1 and 2, as your standards for typing,
6 calling a sample a 2-1. You ought to see a reasonable
7 1 band and a multiplicity of bands that you see toward
8 the top of the gel should line up with the bands in
9 your 2-1 standard.

10 Q Does using the gradient acrylamide gel, does the
11 electrical charge of the hemoglobin complex make any
12 difference as to where the protein ends up?

13 A If you use a gradient that's sufficiently steep.

14 Q Like from 4 to 30?

15 A 4 to 30, yes. And you run it long enough, you essentially
16 get to a steady state position or a steady state pattern
17 where the protein runs into a thickness of gel through
18 which it cannot penetrate and its mobility halts so
19 that essentially becomes a separation based upon
20 molecular weight rather than based upon charge.

21 Q So even if you have a diffusion in charge among
22 different molecules, same weight, they are going to
23 end up at the same spot?

24 A Approximately the same spot, yes.

25 Q In terms of the biochemistry of the proteins, other than
26 haptoglobin, what has changed in each of them is amino

008064

11-3

1 acid which has resulted, a different amino acid which
2 has resulted in a different electrical charge; is that
3 correct?

4 A Yes.

5 Q Haptoglobin is different?

6 A Yes, haptoglobin is unique.

7 Q How is that?

8 A The mutation such as it is did not result in the
9 replacement of one amino acid by another amino acid
10 in the polypeptide chain, but, rather, of a polypeptide
11 chain which nearly doubled in size. One piece of
12 polypeptide chain tied to the other end of another
13 piece of polypeptide chain, one piece of gene tied
14 onto another piece of gene, the net result being the
15 polypeptide chain in the type 2 type which is nearly
16 twice as long as the polypeptide chain in the type 1
17 type in which the amino acid sequence and the front
18 half and back half is near duplicate.

19 For the one you would have the alphabet A to Z;
20 then the other, you would have the alphabet from A to R.
21 Then it begins at C and runs through to Z.

22 Q The 2-1 type has a combination of both your A to Z then
23 your longer alphabets?

24 A That's right.

25 Q The type 2-1 modified, it's the 2 that's modified; is
26 that correct?

008065

11-4

1 A Yes. It appears to be produced at a lower level than
2 the 2 normally is.

3 Q How does that reflect itself using this gradient
4 acrylamide gel?

5 A You tend to see a greater preponderance of the lower
6 molecular weight forms as compared to the higher molecular
7 weight forms.

8 Q So you will get a --

9 MR. NEGUS: Could I have another piece of paper?

10 THE COURT: Yes.

11 MR. NEGUS: Which will be marked, I take it, as K-9?

12 THE CLERK: Yes, it is, your Honor.

13 Q (BY MR. NEGUS) Could you draw a 2-1 and a 2-1 modified
14 pattern?

15 A These are going to be very approximate.
16 This would be, I hope, a reasonable approximation.

17 Q The heavier are toward the top?

18 A Yes.

19 Q Now, when you have a weak sample of a 2-1, do any of
20 those particular bands not show up first?

21 A Yes. This part.

22 Q Toward the top?

23 A Toward the top tends to be the weaker part of the pattern.

24 Q So if you have a weak 2-1, it can end up looking like a
25 2-1 M?

26 A The band intensities would not be quite the same. With

008066

11-5

1 the 2-1 M, the band would be much -- With the 2-1 M, the
2 1 band would be much more prominent in the 2-1 M sample
3 than in the 2-1 sample.

4 Q The difference between a weak 2-1 M and a weak 2-1, would
5 they end up looking pretty much the same?

6 A No. Probably not. Again, because of the relative
7 intensities of the bands through the middle range and
8 the major bands at the bottom.

9 With the major band at the bottom is the known
10 polymerized molecule, the haptoglobin which consists
11 of two alpha 1 chains and two beta chains, and the
12 proportions of the bands that one sees throughout in
13 a 2-1 sample depends upon the starting proportions of
14 the alpha 1 chain and the alpha 2 chain, and if they
15 start out at nearly equal proportions, then one tends
16 to see a band, an alpha 2, beta 2 band, which is
17 anywhere from weak to moderately strong, and then a
18 series of polymeric bands above it of higher molecular
19 weight band.

20 With the 2 M, since the alpha 1 chains are present
21 in much higher proportion to begin with, it's clearly
22 the dominant band and one sees the polymer bands at
23 the lower intensity.

24 Q In order to be confident in calling a 2-1 M, you need
25 to have a certain intensity to the 1?

26 A Yes.

008067

11-6

1 Q And is that something that's quantitatable or something
2 that's based upon experience?

3 A It's quantitatable, but it's based primarily on the
4 experience.

5 Q How would you quantify it?

6 A I would use an entirely different technique than this.
7 I would separate the polypeptide chains and separate
8 them on the basis of molecular weight and then look at
9 the relative intensities of the alpha 1 chain and the
10 alpha 2 chain.

11 Q But just in order to make a reliable call using the
12 4 to 30 percent gradient of acrylamide gel, it's
13 essentially just a question of knowing how intense it
14 has to be before you call it?

15 A That's right.

16 Q In the PGM₁ where you have subtypes, is that referred to
17 as a hidden variation?

18 A When you subtype.

19 Q The subtyping is done by isoelectric focusing?

20 A Either that or electrophoresis under different pH
21 conditions.

22 Q Before that was done, it was just generally thought
23 that all 1's were 1's; is that right?

24 A That's correct. 1's still are 1's. It's just that you
25 can subdivide 1's into 1 pluses, 1, and 1 minuses.

26 Q Basically before that was discovered, the 1 plus,

008068

11-7

1 minus, was anybody aware that there were two different
2 chemicals that were going by the same name of 1?

3 A No.

4 Q That phenomenon where you have two different chemicals
5 going by the same name, because they appear at the same
6 spot on the electrophoretic plate, is that known as a
7 hidden variation?

8 A Hidden variation or cryptic variation.

9 Q Are there any other of the proteins that we have been
10 considering that have hidden variations to them?

11 A Esterase D does and haptoglobin does.

12 Q What about peptidase A?

13 A Yes, peptidase A does. It's not accessible the same way
14 the others are. In red cells, peptidase A is present as
15 an activity variant. Some people have high levels of
16 peptidase A activity in their red cells; others have
17 intermediate levels; and some people have low levels.

18 After a fair amount of searching for the
19 electrophoretic system, one was found that would enable
20 the high activity form of the enzyme to be distinguished
21 from the low activity form of the enzyme.

22 Q That's 1 from an 8?

23 A That's correct. The problem is not everyone has been
24 able to get that to work reliably, and so apart from a
25 very few publications in which the 1 and 8's have been
26 differentiated electrophoretically, it has not been

0
0
0
0
6
9

11-8

1 given nearly the scientific play, if you will, as that
2 of the differentiation between the 1 and 2 has been
3 given.

4 (No omissions.)

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

0
0
8
0
7
0

1 Q Do the 8 and the 1 show up in the same spot?

2 A Yes, essentially the same spot.

3 Q And certainly they show up in the same spot using

4 Mr. Wraxall's multisystem?

5 A Yes.

6 Q The 8's and the 1's have differential survival rates?

7 Does one last longer than the other?

8 A In lipid or in red cells, it appears that there is no

9 difference. It was suggested initially, that is when

10 the activity variation was first found, that a plausible

11 explanation for the activity variation was that there

12 was one form of enzyme that was stable to Type I and

13 another form of the enzyme which subsequently came to

14 be called Type A or the 8 isozyme. The studies were

15 done in red cells looking at the adolescent, middle aged,

16 and senile red cells, and it was found that the change

17 in activity that occurred over the life span of the

18 red cell could not account for the differences that were

19 seen. So that hypothesis, that is, that the 8 represents

20 an unstable form of an unstable enzyme, I think has been

21 basically rejected.

22 Q Nobody knows whether the 8's last longer than the 1's or

23 the 1's last longer than the 8's?

24 A Right. Remember the 8's started at a much lower level,

25 so even if they were to disappear at the same time, the

26 8's would disappear first because there was a lower amount

0
0
8
0
7
1

1 of them to begin with.

2 Q Would the hidden variation in the esterase D as the 5 and
3 the 1 --

4 A The 5 and the 2.

5 Q Do they -- does the 5 have a different stability than
6 the 2?

7 A It appears not to. There is one paper that I'm aware
8 of that suggests that it might.

9 Q What's that?

10 A I think that would be a paper by Sutton, which appeared
11 in the Journal of Forensic Science Society in the last
12 year. I'm not sure from that paper whether he has
13 suggested the 5 is less stable or that the 5 and the 2
14 have altered stability or whether the reliability of
15 typing using isoelectric focusing, which is the way you
16 have to -- the technique you have to use in order to
17 distinguish the 5 and the 2, whether the reliability of
18 focusing as a technique would be good for stains more
19 than a couple weeks old. I don't have a clear
20 recollection of that paper, so I can't comment in a
21 hard way to the content of it.

22 In any case, Sutton's typings have been refuted.
23 Other people find that isoelectric focusing can be used
24 to type the esterase D subtypes in stains older than
25 the stains that Sutton was able to type.

26 Q Has that work been published?

0
0
8
0
7
2

1 A It is due to be published. It has been presented at one,
2 and I think two meetings, and is due to be presented
3 again next year at the international meeting.

4 Q What are the hidden variations in haptoglobin?

5 A The hidden variation in haptoglobin is in the Alpha 1
6 chain, and in order to detect that variation you have
7 to chemically disrupt the protein, do a chemical
8 modification of the protein, so that it does not
9 spontaneously reform, recombine, and then do an electro-
10 phoretic analysis.

11 Q That involves an entirely different technique than was
12 used in this particular chart; is that correct?

13 A Yes, yes.

14 Q The one subdivides into one fast, one slow?

15 A Correct.

16 Q Does the one fast and the one slow have a different
17 stability from one another? Does one last longer than
18 the other?

19 A Not that anyone is aware. Again, this is the kind of
20 problem that if it existed, enough haptoglobins have
21 been looked at it would have been seen. What's more,
22 it's probably irrelevant in terms of the typing of
23 haptoglobin.

24 If you have a one fast, one slow type, then since
25 by conventional typing methods they are indistinguishable,
26 you would see it as a simple loss of activity situation.

0
0
8
0
7
3

1 In a Type 2-1, since the patterns of the 2-1's are so
2 strikingly different than the patterns of the 1's, one
3 would see some indication in the polymeric pattern
4 formation that is in the higher molecular weight
5 bands, even if the Alpha 1 or the band that contains the
6 unpolymerized material were of weakened intensity.

7 Q You mentioned that heat can cause wet state changes to
8 plates and dried acid phosphatase. Can heat cause any
9 other changes in the presentation of the phenotypes of
10 any of the proteins that we've been talking about?

11 A Okay. First, it wasn't quite the way you stated.

12 Q Okay.

13 A Heat can cause changes in acid phosphatase when it is
14 in solution after it has been extracted from a bloodstain.
15 In the dry state proper heat seems not to have a
16 significant effect on the band patterns.

17 Q I didn't mean to suggest otherwise.

18 A Okay.

19 Q Does heat have effect on any of the other proteins?

20 A The principal effect of heat is to inactivate them.

21 Q What about an improper cooling of the gel, which I take
22 it is what usually causes the problems with acid phosphate.

23 A If the gel gets too hot, you'll simply inactivate the
24 protein.

25 Q What if it's just a little bit too hot?

26 A You will inactivate some of the protein.

0
0
8
0
7
4

1 Q How can you tell if that's happened?

2 A It would generally show up as a weaker staining

3 intensity on the gel.

4 Q Do you ever get -- does heat ever cause like warping?

5 A Yes, heat can cause warping.

6 Q Does that affect the reliability of that particular gel?

7 A It depends upon the degree of the warp. If the warp

8 is substantial, then, yes, you'd probably want to throw

9 the gel away and not admit to anyone that you ever

10 ran it. On the other hand, if the heating problems are

11 mild and the pattern of the warp can be followed, then

12 you can make a reliable typing from that.

13 Q How do you tell the difference between a substantial

14 warp that you'd throw out and a mild warp that you don't?

15 Just experience?

16 A Basically experience, yes.

17 Q In making sure you don't have heating problems, there's

18 a cooling system that's used in most electrophoretic

19 plates; is that right?

20 A One doesn't have to use a cooling system. If you want

21 to run at high voltages, then you need to have a cooling

22 system. If you want to run at lower voltages, then you

23 can do the electrophoresis in the refrigerator. That

24 provides ample cooling. If you run it at lower voltages,

25 you can run it at room temperature and you will not get

26 significant heat buildup.

0
0
8
0
7
5

1 Q When you do use the cooling system, there's sometimes
2 a cooling plate which is cooled by water or some other
3 form, and then the glass plate is put on top of that?

4 A Yes.

5 Q Just as a matter of thermodynamics, which is more
6 efficient: to have air between the glass and the cooling
7 plate or water?

8 A Water between the glass and the cooling plate. That
9 would give you better thermo conductivity. And you
10 usually do have water in there, because there's
11 condensation on the surface of the cooling plate.

12 Q It wouldn't make sense for the efficiency of the system
13 to keep wiping off the glass plate to get rid of the
14 condensation, right?

15 A Well, you wipe it off so that you don't have excessive
16 amounts of moisture on there. Otherwise you'll have
17 basically a short circuit of your gel. So you need to
18 have -- you will have some condensation there, but you
19 don't want excessive amounts of condensation.

20 THE COURT: Is this a good breaking point, Mr. Negus?

21 MR. NEGUS: Sure.

22 THE COURT: Let's take a 15-minute recess.

23 (Recess.)

24 (No omissions.)

25

26

0080076

1 MR. NEGUS: Your Honor, just one other thing. We
2 would request this one time only. Never again.

3 Dr. Sensabaugh has to get back to Berkeley tomorrow
4 afternoon. We would like to stop at 4:00 so I can get my
5 transcript, but I would like to start at 9 tomorrow. We
6 probably will be finished by no later than 12:30 for the day.

7 THE COURT: As a matter of fact, I just spoke to my
8 clerk. I could start earlier tomorrow.

9 MR. NEGUS: 9 will be just fine.

10 THE COURT: No problem.

11 Q (BY MR. NEGUS) Does the -- I think the technical
12 word is substrate on which a bloodstain is deposited
13 affect your ability to type it reliably?

14 A For the most part, no. You are referring to the enzymes?

15 Q Right.

16 A Yes. For the most part, no. Bloodstains or markers in
17 bloodstains survive a little bit longer, it appears, on
18 some materials than on other materials. But there
19 appears the survival is a different matter than typing
20 reliably.

21 Q Do some substrates wipe out your ability to type
22 altogether?

23 A Conceivably if you were to drop a drop of blood into
24 an acid solution, that would wipe out the markers. But
25 on most things like tile or fibers, glass, painted
26 surfaces, things of that sort, the surface does not

008077

13-2

1 seem to have much effect, at least with regard to our
2 experience.

3 Q Now, with respect to enzymes, does blue denim of the
4 kind that's commonly found in blue jeans diminish the
5 ability or wipe out the ability -- Strike.

6 Does blue denim wipe out the ability to type enzymes?

7 A Not in my experience. I have prepared stains on blue
8 denim and have been able to type them or have them typed
9 by students, so it does not seem to be a problem, at
10 least to the limited extent of my knowledge.

11 Q What about nylon?

12 A No. Theoretically on dried stains over very long periods
13 of time, you could get a cross-linking between the
14 protein material and the stain in the nylon, but I think
15 that would have to be over quite an extended period of
16 time, and that would not affect typing reliability.

17 That would affect survival.

18 Q That would be a period of months rather than days?

19 A Months to years rather than days.

20 Q Is there in the literature reference to blue denim
21 affecting ability to do ABO typing?

22 A I'm not sure that it's in the literature; however, it's
23 anodally known that blue denim can cause problems.

24 Q Why is that?

25 A Presumably -- and it has not been pinned down, to my
26 knowledge -- but presumably it's because of the sizing

0
0
8
0
7
8

13-3

1 in the denim material which has some ABO-like substance
2 in it, something that gives a background reaction with
3 the enzyme.

4 Q Something in the shape of the denim, molecules similar
5 to the shape of the enzyme?

6 A No, not in the shape of the denim molecules. I would
7 guess it would be in the sizing material. The material,
8 when it's freshly prepared at the mills, I guess, has
9 often a starch-like material added to it to give it
10 a little bit more substance. That gives way after
11 numerous washings, sometimes after not very many washings,
12 which is why that nice, stiff shirt that you bought
13 suddenly turns into a limp rag.

14 In any case, the sizing material presumably contains
15 carbohydrate structures that are similar enough to the
16 ABO antigenic structures so that the antibodies can
17 recognize them.

18 Q So what happens is this starch stuff will bind the
19 antibodies in the same way the antigens do?

20 A Yes.

21 Q Is there anything known about this starch that could
22 interfere with protein typing?

23 A No.

24 Q Aside from the peptidase A and the PGM, can any other
25 of the polymorphic proteins that we have been considering
26 be determined through semen?

0
0
8
0
7
9

13-4

1 A If you have semen at sufficient concentration, you may
2 be able to get transferrin typing.

3 Q What about GLO?

4 A Yes, it's present in the semen. If the semen sits
5 around for a period of time, the glyoxalase has a
6 tendency to deteriorate.

7 Q How long is that period of time?

8 A It's not well established. Liquid semen stored at
9 37 degrees on the order of -- that's 37 degrees Celsius,
10 body temperature -- on the order of four to eight hours,
11 I think, shows a significant deterioration of glyoxalase.

12 Q What if it's dry?

13 A If it's dry, it's stable.

14 Q How long does it normally take semen to dry if you just
15 deposit it on a blanket?

16 A That depends on a couple of variables. One variable is
17 rate of air motion around the stain. Another variable
18 is the surface area of the stain. A third variable is
19 the relative humidity of the atmosphere.
20 In Boston in July, things don't get dry. That's
21 where the relative humidity is close to a hundred percent.

22 Q Assuming that the humidity is pretty much like it is in
23 this particular room, what is the range that you can have
24 with the other variable?

25 A Standard indoor humidity runs between 45 and 60 percent.
26 At least, that's what it has been running in my office

00808080

13-5

1 for the last year or so.

2 With a reasonable amount of air movement, a small
3 stain could be dry in half an hour to 45 minutes. A
4 large stain might take up to two hours or so to dry.

5 Q If the glyoxalase did become unstable, would it become
6 unreliable?

7 A It has a tendency, glyoxalase has a tendency to go,
8 off of the limited experiments that have been done and,
9 unfortunately, never follow up on, to indicate that
10 there is something of a band shift as it deteriorates.

11 The band shift, as I remember it, would be of a
12 sort that would signal itself that something strange
13 is happening.

14 (No omissions.)

15

16

17

18

19

20

21

22

23

24

25

26

0
0
8
0
8
1

1 Q So you wouldn't be likely to miscall; just wouldn't
2 call?

3 A Correct.

4 Q The experiments that you've done in your office where
5 the relative humidity is ranged from 45 to 60 percent,
6 that's at the University of California in Berkeley?

7 A Correct. The experiments aren't done in my office. My
8 office is at 45 to 60 percent relative humidity.

9 Q Okay. Well, you've tested your office for --

10 A I have a humidity meter next to my desk.

11 Q What's the external relative humidity in Berkeley?

12 A Well, when it rains, it's a 100 percent. When it dries
13 and we have Santa Anas, it gets down to 10 or 15 percent.
14 When it's raining, the relative humidity in the office
15 goes up to about 60 percent. So even though there's a
16 high relative humidity outside, inside the relative
17 humidity doesn't change as dramatically.

18 Q When it's 15 percent outside, is it like 45 to 60
19 percent inside?

20 A When it's 15 percent outside, it tends to be on the
21 order of 45 inside.

22 Q Is the inside relative humidity partly a function of the
23 space? In this room you get less buildup of relative
24 humidity than you would in a smaller one, for example?

25 A It depends upon the air movement in the space as much
26 as anything. I wouldn't want to predict with the air

0
0
8
0
8
2

1 conditioning system in this building what relative
2 humidities might be. The air conditioning system
3 probably would regulate the relative humidity pretty --
4 within fairly narrow limits.

5 Q Assuming that offices at Berkeley haven't changed much
6 in recent years, I take it it's a small office?

7 A Actually it's a large office as offices at Berkeley go.

8 Q Approximately what are the dimensions?

9 A It's about 200 square feet.

10 Q In a tight hall or closet, the humidity is going to go
11 up?

12 A Depends upon, again, upon air flow, it depends upon
13 where the air is coming from. If air is blowing in off
14 of a puddle, say, then the humidity might be higher.
15 If it's blowing in off the desert, then I would guess
16 the humidity would be lower. In a closet, there isn't
17 really a source of moisture. There is in an office a
18 source of moisture. Wherever there are people, there's
19 a source of moisture.

20 Q A person in a closet would produce a source of moisture?

21 A A person in a closet would produce a source of moisture,
22 yes.

23 Q Can a pool of blood raise the relative humidity?

24 A It would depend, then, as you correctly asked earlier,
25 upon the air space available around it. A one-foot
26 square of blood over here on the floor would not have

0
0
8
0
8
3

1 much of an effect on the humidity where you were
2 standing. There might be localized changes there. The
3 blood would probably get dry before -- without having
4 any appreciable effect on the humidity of the room.

5 Q In a house could one expect greater humidity in a hall
6 outside a bathroom than, say, an open living room?

7 A If someone is taking a shower in the bathroom, possibly,
8 yes.

9 Q How long would those effects last; do you know?

10 A No, I don't. You could probably get a rough estimate on
11 it. When you take a shower in your bathroom, your
12 mirrors fog over. How long does it take for the mirrors
13 to clear up?

14 Q Do any of those polymorphic proteins exist in saliva?

15 A If they do, at a level that would not be practical for
16 typing purposes.

17 Q Is there any other genetic marker that's polymorphic
18 that exists in saliva that you can type?

19 A There are genetic markers present in saliva, a half
20 dozen of them or so. They have either been -- let's
21 put it this way: the paternity people who deal with
22 fresh material are not comfortable typing them for
23 paternity purposes, or at least the paternity people I
24 know. And this is because basically the typing of
25 salivary markers is done in only a few laboratories,
26 and not everyone feels comfortable with the typing that

0
0
0
0
0
4

1 is done. The typing in stains has not to my knowledge
2 been documented as a reliable procedure.

3 Q What about with amylase?

4 A Amylase? Amylase does show genetic markers. Salivary
5 amylase, the frequency of the variant types is pretty
6 low, and one that has a low payoff of yielding useful
7 genetic information.

8 Q Is it higher amongst blacks than it is amongst Caucasians?

9 A I couldn't give you an answer on that. I don't know
10 what the gene frequencies are for the amylase.

11 Q Can you reliably type Lewis antigens from saliva stains?

12 A That's a point of contention, I believe. Some people
13 do Lewis typing from saliva stains. Other people don't
14 feel comfortable doing those types of saliva stains.

15 Q What method do those people who feel comfortable use?

16 Absorption-inhibition or --

17 A No, they use an agglutination-inhibition typing technique.

18 Q Is there a difference between absorption-inhibition and
19 agglutination-inhibition?

20 A They are used by some people synonymously, but I don't
21 use them synonymously.

22 Q To your mind what is the difference?

23 A Absorption-inhibition is the technique that one uses
24 for typing bloodstains, and it is analogous to absorption-
25 elution in the sense that antibody is absorbed and then
26 you measure -- in the case of absorption-elution

8
8
8
8
8
5

1 you measure the absorption of antibody by its removal
2 from the general antibody solution. Agglutination
3 inhibition measures the presence of soluble substances
4 in a liquid material or in a stain extract.

5 Q You indicated that amylase is present in high concentra-
6 tions in saliva?

7 A Yes.

8 Q Are there any units for expressing the volume?

9 A There are several units that have been defined. I can't
10 give you standardized units. There are several
11 standardized units that are used in the clinical
12 literature.

13 Q What is the approximate difference in, say, the amount
14 of amylase present in saliva and the amount of antigens,
15 ABO antigens, present in saliva?

16 A What do you mean by difference?

17 Q Are they present in the same amounts or --

18 A Oh, well, they're apples and oranges. Antigens are
19 measured in terms of titer units usually. Amylase
20 activity would be measured in terms of enzyme units.
21 Usually when one does an amylase test when testing for
22 saliva, one does a semi-quantitative test in which you
23 look to see how fast the reaction goes within a certain
24 time interval. If the reaction has gone within that
25 time interval, you consider it a positive reaction.

26 Q When you are measuring -- excuse me. When you are trying

8
0
8
0
8
0
6

1 to determine the presence of amylase in suspected
2 saliva stains, generally the substance that you think
3 is saliva is dissolved in a saline solution first?

4 A You can do what is in effect an in situ spot test.
5 You can swab a little bit of the suspect material with
6 a piece of filter paper that is impregnated with an
7 amylase indicator solution, so that if the amylase is
8 present then the filter paper turns a color or loses a
9 color. That's one kind of test.

10 Another kind of test would be as you described it,
11 you would prepare an extract of your suspect stain and
12 test the extract for amylase activity.

13 Q When you're preparing that extract, is there any way to
14 determine what the dilution of saliva to saline is?

15 A Oh, okay. You can get a rough estimate, yes.

16 Q How do you do that?

17 A If you do a quantitative assay, if you know the range
18 of saliva or -- excuse me, the range of amylase that is
19 present in liquid saliva, then you can take the measured
20 amount of amylase in your stain extract and extrapolate,
21 if you will, a minimum dilution and a maximum dilution
22 based on the knowledge of the amount that is normally
23 present in saliva to begin with.

24 Q So in order to do this quantitative assay, you would
25 have to essentially compare how much starch the undiluted
26 saliva eats up in a given point in time with how much

008087

1 starch the diluted saliva eats up in a given point in
2 time?

3 A That's one of the assays for amylase. There are many
4 others, but that's one, yes.

5 Q If you do the quantitative assay, what is the maximum
6 dilution of saliva to saline that you can have and still
7 be confident that a negative result on an agglutination-
8 inhibition test indicates that you've got a non-secretor?

9 A That would depend upon the method that you used for the
10 testing of the secretor substances. If you use a
11 relatively insensitive method for typing the secreted
12 substances, then you could not have a very large dilution,
13 on the order of one to ten, say, before it would be
14 impossible to distinguish between a non-secretor and a --
15 non-secretor saliva and a saliva that contained secretion
16 at low level.

17 If you used a more sensitive procedure, then you
18 could go to a greater dilution. It depends upon the
19 sensitivity. In short, it depends upon the sensitivity
20 of the procedure that you used for the ABO blood group
21 substance.

22 Q What is sometimes referred to as an absorption-inhibition
23 technique for determining the ABO antigens would be a
24 relatively insensitive technique; is that correct?

25 A No, no. It can be quite sensitive. It depends upon the
26 parameters of the test that is used. In some people's

0
0
8
0
8
8

1 hands using a microscopic inhibition of agglutination --
2 that is, using a microscope to detect the inhibition of
3 agglutination -- it can be quite sensitive. If you use
4 just your eye to detect the inhibition of agglutination,
5 then it is somewhat less sensitive by a factor of about 5.

6 Q So if you were to use a microscope, you can get it down
7 to where you could be fairly confident with, say, a
8 dilution of 1 in 50?

9 A Yes. I would say in that range. This all has to be a
10 little bit hypothetical, because it is predicated also
11 upon knowing what titer range of ABO substances would
12 normally be found in the saliva given that particular
13 technique of substance detection.

14 (No omissions.)

15

16

17

18

19

20

21

22

23

24

25

26

0
0
8
8
8
9

15-1

1 Q Are those figures known?

2 A They are in a not very complete way. And by that I
3 mean that some people have been very much concerned with
4 this issue. In using their techniques, they have
5 developed this information. Other people have not been
6 so concerned with the quantitative aspect of it and if
7 they use different techniques, it would be different to
8 extrapolate exactly what ought to be expected using their
9 techniques.

10 Q So if you are going to use the agglutination inhibition
11 technique to reliably predict nonsecretor status, you
12 are going to have to know what your titers are?

13 A That's right.

14 Q Amylase itself will show up at dilutions considerably
15 greater than blood in antigens; is that correct?

16 A Yes.

17 Q So unless you do these quantitative assays and have known
18 titers, merely getting a positive test for amylase and
19 negative result on your agglutination of inhibition test
20 doesn't tell you whether you have a nonsecretor?

21 A Correct. You have to have additional information.

22 Q Does nasal mucus contain polymorphic proteins?

23 A I would presume it does, but I wouldn't know what they
24 would be. Electrophoretically proteins?

25 Q Correct.

26 A Yes.

0
0
8
0
9
0

15-2

1 Q Do epithelial cells contain polymorphic enzymes?
2 A Yes, epithelial cells are basically cells and they
3 contain the enzymes that other cells contain, so they
4 would have most of the enzymes that are necessary for
5 the metabolic operation of the cell.
6 Q That would include peptidase?
7 A Perhaps not a peptidase. It would include some
8 peptidase, but perhaps not peptidase A. It would
9 certainly include PGM since it seems to be one of the
10 essential enzymes.
11 Q What about esterase D?
12 A I would guess probably so.
13 Q And CA II?
14 A I don't know about that. I wouldn't hazard a guess.
15 There are other carbonic anhydrases and those cells,
16 epithelial cells, may show others.
17 Q Would those other carbonic anhydrases show up at the
18 same spot on a Group IV electrophoretic plate as a
19 CA II 1 band would?
20 A No. Should show up in a different position, and they
21 also have a different substrate specificity -- that is,
22 different staining procedure issues for their detection.
23 Q Would the same, if esterase D is present in the
24 epithelial cells, would the same electrophoretic setup
25 as is on K-1 be usable to type it?
26 A Yes.

008091

15-3

1 Q Same for the PGM?

2 A Yes.

3 Q And same for the PEP A, if in fact there is PEP A?

4 A Yes. You would have to have a sufficient volume of

5 PEP A cells in order to do the testing, and that's a

6 requirement. If you didn't, it's just like the bacteria.

7 If you don't have so much of them, then you won't be

8 able to detect their presence.

9 Q But if you have, as it were, a big nose blow into a

10 napkin and you get the results, they should be reliable

11 results?

12 A I don't know how much, what the volume of epithelial

13 cell is in a big nose blow. My experience is mostly

14 it's mucus.

15 Q How would you test to see whether there were epithelial

16 cells of any quantity in a stain?

17 A In a mucus stain?

18 Q Yes.

19 A With a smear of stain, I would look at it under the

20 microscope and probably do some cell strain which would

21 show up the structure of the epithelial cells.

22 Q If you saw a lot of them, then you would probably type it?

23 A If I saw a lot of them, I might attempt typing, yes.

24 Q These electrophoretic techniques are used to determine

25 the presence and types of polymorphic proteins in not

26 just semen, saliva and blood stains; is that correct?

8
0
8
0
9
2

15-4 1 They are used for stuff taken from lungs, livers,
2 spleens?

3 A Yes. Just about any tissue material you can
4 electrophoretically type something.

5 Q The only reason that in the forensic context there is
6 heavy emphasis on semen, saliva and blood is that is
7 what you generally get in evidence?

8 A Semen and blood, and mostly on blood. As I stated
9 earlier, saliva poses problems.

10 In postmortem material, you are sometimes faced
11 with other tissue problems.

12 Q And in determining the identity of people who are
13 deceased, that kind of typing has been carried out in
14 forensic context for some period of time; is that
15 correct?

16 A Yes.

17 MR. NEGUS: I think this is probably as good a time
18 as any.

19 THE COURT: All right. We will adjourn until 9:00
20 tomorrow morning.

21 Please return at that time.

22 (Whereupon the proceedings taken and had
23 on this date were adjourned.)

24 --000--
25
26

0
0
8
0
9
3