

COPY

SUPREME COURT OF THE STATE OF CALIFORNIA

THE PEOPLE OF THE STATE OF CALIFORNIA,

Plaintiff-Respondent,

vs.

KEVIN COOPER,

Defendant-Appellant.

) CR 72787

) Supreme Court
No. CR17

24552

APPEAL FROM THE SUPERIOR COURT OF SAN DIEGO COUNTY

HONORABLE RICHARD C. GARNER, JUDGE PRESIDING

REPORTERS' TRANSCRIPT ON APPEAL

APPEARANCES:

For Plaintiff-Respondent:

HON. JOHN K. VAN DE KAMP
State Attorney General
Department of Justice
110 West "A" Street, Suite 700
San Diego, California 92101

For Defendant-Appellant:

IN PROPRIA PERSONA

26
VOLUME 16 of 16 volumes.
Pages 1276 to 1409, incl.

JILL D. MC KIMMEY, C.S.R., C-2314
and
BRIAN V. RATEKIN, C.S.R., C-3715
Official Reporters

007793

1 SUPERIOR COURT OF THE STATE OF CALIFORNIA
2 FOR THE COUNTY OF SAN BERNARDINO

3 THE PEOPLE OF THE STATE)
4 OF CALIFORNIA,)
5 Plaintiff,)
6 vs.) NO. OCR-9319
7 KEVIN COOPER,)
8 Defendant.) VOLUME 16
Pgs. 1276 thru 1409, incl.
9

10 REPORTERS' DAILY TRANSCRIPT

11 BEFORE HONORABLE RICHARD C. GARNER, JUDGE

12 DEPARTMENT 3 - ONTARIO, CALIFORNIA

13 Wednesday, April 25, 1984

14 APPEARANCES:

15 For the People: DENNIS KOTTMEIER
District Attorney
16
17 DENNIS KOTTMEIER
District Attorney
By: JOHN P. KOCHIS
Deputy District Attorney
18
19 For the Defendant: DAVID MCKENNA
Public Defender
By: DAVID NEGUS
Deputy Public Defender
20
21
22
23 Reported by: JILL D. MCKIMMEY
Official Reporter
C.S.R. No. 2314
and
24 BRIAN RATEKIN
Official Reporter
C.S.R. No. 3715
25
26

1 **I N D E X**

2	<u>PEOPLE'S WITNESS</u>	<u>PAGE</u>
3	WRAXALL, Brian	
4	Direct Examination by Mr. Kochis	1277
5	Cross-Examination by Mr. Negus	1326
6	Cross-Examination Resumed by Mr. Negus	1360
7	Redirect Examination by Mr. Kochis	1381
8	Recross-Examination by Mr. Negus	1391
9	<u>DEFT'S WITNESS</u>	
10	WRAXALL, Brian	
11	Direct Examination by Mr. Negus.	1394
12	Cross-Examination by Mr. Kochis.	1403
13	Redirect Examination by Mr. Negus.	1405

14	<u>EXHIBITS</u>	<u>FOR I.D.</u>	<u>IN EVIDENCE</u>
15	6 - B. Wraxall's vitae	1283	1283

16 --oo--

17
18
19
20
21
22
23
24
25
26
 0
 0
 7
 7
 9
 5

1 ONTARIO, CALIFORNIA; WEDNESDAY, APRIL 25, 1984; 9:40 A.M.

2 DEPARTMENT NO. 3 HON. RICHARD C. GARNER, JUDGE

3 APPEARANCES:

4 The Defendant with his Counsel, DAVID
5 NEGUS, Deputy Public Defender of San
6 Bernardino County; DENNIS KOTTMEIER,
7 District Attorney of San Bernardino
8 County, and JOHN P. KOCHIS, Deputy
9 District Attorney of San Bernardino
10 County, representing the People of
11 the State of California.

12 (Jill D. McKimmey, C.S.R., Official Reporter, C-2314,
13 Brian Ratekin, C.S.R., Official Reporter, C-3715)

14
15 THE COURT: Good morning.

16 MR. KOCHIS: Your Honor, at this time, similar to
17 the arrangement we had yesterday morning, I am going to
18 call, with Mr. Negus' permission, of course, Brian Wraxall
19 out of order before I complete my redirect with Mr. Gregonis.

20 THE COURT: Very well.

21 MR. KOCHIS: I would call Brian Wraxall to the
22 stand at this time.

23 THE COURT: Raise your right hand, sir, for the
24 oath.

25 ---

26 ---

0
0
7
7
9
6

1 B R I A N W R A X A L L, called as a witness by the
2 People, was examined and testified as follows:

3 THE CLERK: You do solemnly swear the testimony
4 you are about to give in the action now pending before
5 this court shall be the truth, the whole truth, and
6 nothing but the truth, so help you God?

7 THE WITNESS: I do.

8 THE CLERK: Please be seated.

9 State your name, please, for the record, and spell
10 your last name.

11 THE WITNESS: My name is Brian Wraxall, spelled
12 W-r-a-x-a-l-l.

13
14 DIRECT EXAMINATION

15 BY MR. KOCHIS:

16 Q. Mr. Wraxall, what is your present business or
17 occupation?

18 A. I am a forensic serologist.

19 Q. And at this period of time, by whom are you employed?

20 A. The Serological Research Institute, which is located in
21 Emeryville in California.

22 Q. What position do you hold within that institute?

23 A. I am the chief forensic serologist and the executive
24 director of the institute.

25 Q. Would you define for the Court what a forensic
26 serologist is.

0
0
7
7
9
7

1 A A forensic serologist is a person who is concerned
2 with the isolation, the identification and individual-
3 ization of blood and other body fluids, particularly
4 as they relate to crimes of violence.

5 Q And by "other body fluids", are you talking about,
6 for example, among those, saliva and semen?

7 A That's correct.

8 Q Do you have any educational background in the area of
9 either serology or forensic serology?

10 A I was educated in England where I obtained a Higher
11 National Certificate in Applied Biology, which would
12 have covered the subjects of biochemistry, physiology
13 and microbiology.
14 I was -- received most of my training in forensic
15 serology on the job at the Metropolitan Police Forensic
16 Science Laboratory which is located in London, England.

17 Q How long were you employed by that particular laboratory
18 in England?

19 A I started work there in 1963, and for the first two
20 years I was trained in general criminalistics,
21 particularly in the biology division of that laboratory.
22 I then, after that time, began to specialize in
23 forensic serology, and have been doing that ever since.

24 Q How long did you specialize in forensic serology with
25 the Metropolitan Police Department in London?

26 A From approximately 1965 to 1977, when I came to this

0
0
7
7
9
8

1 country.

2 Q Are you familiar with a person by the name of Dr. Culli-
3 ford?

4 A Bryan Culliford, yes. He was my immediate supervisor
5 in London.

6 Q. And how long did you -- did you work under his
7 direction at the crime lab in London?

8 A Yes, I did.

9 Q For how many years?

10 A. For the full length of time that I was there.

11 Q And essentially what type of training did you receive
12 with the Metropolitan Police in London in the area of
13 forensic serology?

14 A. It was all on-the-job training in terms of the
15 identification, the location of blood and other body
16 fluids, the identification of those body fluids, and
17 the species identification of blood, and then within
18 the time -- when I was -- started working there, the
19 only system I think that they were doing routinely
20 was the ABO system. While I was there, a lot of the
21 newer polymorphic enzymes and proteins were developed
22 within that laboratory in its application to bloodstain
23 and other body fluid stains, and so I was part and
24 parcel of that development and was very familiar with
25 that development as it became developed and introduced
26 into routine casework.

007799

1 Q I take it at some point you came to this country?

2 A Yes, I did.

3 Q In what year?

4 A In 1977.

5 Q And is that in furtherance of any professional or
6 occupational career?

7 A Yes, it was.

8 Q How did you come to come to this country?

9 A I was invited to come to this country by LEAA, which is
10 the Law Enforcement Assistance Administration, to work
11 on a project funded by that agency known as the Blood-
12 stain Analysis System, and I came in March of 1977
13 when that project had started, and worked on that
14 until 19 -- the middle of 1978.

15 Q What was your capacity or role within that particular
16 project?

17 A I was employed as a consultant to Beckman Industries,
18 and the reason that I was employed that way was that
19 the grant from the government first of all went to
20 the Aerospace Corporation, and their main contract for
21 this grant was Beckman Industries located in Southern
22 California. They subcontracted that grant to the
23 University of California in Berkeley, and I was employed
24 as a consultant to Beckman, and I worked on that
25 project under that role.

26 Q And in a nutshell, the purpose of that project was what?

0
0
7
8
0
0

1 A The purpose of it was to try and see if we could
2 develop a system which would increase the capability
3 of forensic serologists to enable them to group blood-
4 stains in a much more efficient and also, of course,
5 a reliable manner.

6 Q At the conclusion of that project, did you then
7 continue your employment in the field of serology?

8 A Yes, I did.

9 Q How so?

10 A I was employed then by the Serological Research
11 Institute which was started at that time, and the
12 first -- for the first 12 months the Institute
13 received another grant from I don't know whether
14 it was LEAA at that time or whether they had become
15 defunct and it was now funded under the National
16 Institute of Law Enforcement and Criminal Justice,
17 but I received a grant from them to conduct training --
18 serology workshops in training forensic serologists
19 in the new techniques that had been developed under
20 the bloodstain analysis system.

21 Q Then I take it you've done teaching in the area of
22 forensic serology in the past?

23 A Yes, I have.

24 Q And could you explain to the Court what that experience
25 consisted of.

26 A As an employee of the Metropolitan Police Laboratory,

0
0
7
8
0
1

1 I was responsible for training individuals from all
2 over the world who came to that laboratory to learn
3 new techniques, and as that laboratory was at the
4 forefront in some of the newer blood grouping techniques,
5 we would in fact entertain a number of people from
6 different parts of the world, and one of my
7 responsibilities was to train them in certain areas
8 of forensic serology.

9 Q Since your work with LEAA on the bloodstain analysis,
10 have you continued to teach in the area of forensic
11 serology?

12 A Yes, I have. In the first 12 months between '78 and
13 '79, of course, I trained people from all over this
14 country in the new bloodstain analysis system
15 techniques, and when that grant was finished, I still
16 do training courses for people both at my laboratory
17 and also on site at other people's laboratories.

18 Q Have you likewise written any articles which have been
19 accepted for publication in the field of forensic
20 serology?

21 A Yes, I have.

22 Q What do those articles include?

23 A There's approximately 12 articles that have been
24 published which is concerned with grouping of bloodstains
25 and semen stains, the identification of semen stains,
26 and I have given also a number of seminars and papers

0
0
7
8
0
2

1 at professional meetings.

2 Q. For the record, directing your attention to what
3 appears to be page 2 of your vitae, could you read
4 into the record, starting at the top, the articles
5 that you have written which have been accepted for
6 publication in the field of forensic serology.

7 MR. NEGUS: I have no objection to the vitae being
8 marked, if you'd rather do it that way, and have it directly
9 introduced into evidence.

10 THE COURT: Okay. Do you want to mark it?

11 MR. KOCHIS: Yes, if I could have your clerk mark
12 this as Exhibit 3, I believe.

13 THE CLERK: No. 6.

14 THE COURT: Six, accepted.

15 Q. BY MR. KOCHIS: Mr. Wraxall, the document I have just
16 shown to you a moment ago, is this a copy of a vitae
17 you sent me a week or so ago?

18 A. Yes, it is.

19 Q. And does it include a list of the articles that you've
20 written which have been accepted for publication?

21 A. Yes, it does.

22 Q. Are you familiar with the term the ABO blood group
23 system?

24 A. Yes, I am.

25 Q. And is that a concept that is recognized in the field
26 of forensic serology?

0
0
7
8
0
3

1 A Yes.

2 Q And essentially involved in that concept is an
3 understanding that there is an ABO blood group system
4 which manifests itself in all human blood?

5 A Yes. Basically, the ABO system consists of four main
6 groups: A, B, AB and Type O, and every person within
7 the world in general is one of those four groups.

8 Q And within the community of forensic serology, is it
9 an accepted concept that your ABO blood type is
10 inherited, that it is determined genetically?

11 A Yes.

12 Q Likewise, within the concept, is it accepted in your
13 community that a person's ABO blood type remains
14 constant throughout their life?

15 A That's correct.

16 Q Are there within the forensic science community
17 accepted methods for testing, for example, a sample
18 of whole blood to determine a person's ABO blood type?

19 A Yes, there are.

20 Q For example, within your community, the forensic
21 science community, is the slide agglutination technique
22 considered a valid and reliable means of testing a
23 sample of whole blood to determine a person's ABO
24 blood type?

25 A Yes, it is.

26 Q Likewise, within your community, are there tests that

0
0
7
8
0
4

1 are accepted as valid and reliable for testing
2 bloodstains, dried blood, to determine the ABO type
3 of the person who deposited that particular stain?
4 A. Yes.
5 Q. And is the absorption-elution and Lattes test examples
6 of tests that are recognized in your community as a
7 valid and reliable means for making that determination?
8 A. Both those tests are accepted as reliable tests.
9 (No omissions.)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0
0
7
8
0
5

1 THE COURT: Excuse me just a moment.

2 Counsel, do you have anything?

3 (Discussion held regarding another matter.)

4 THE COURT: Very good. Thank you.

5 Q. (BY MR. KOCHIS:) Mr. Wraxall, are you also familiar
6 with the concept of secretor versus non-secretor as it
7 relates to the field of forensic serology?

8 A. Yes, I am.

9 Q. And what do these concepts consist of?

10 A. The definition of a secretor is a person who secretes his
11 ABO blood group substance together with H substance into
12 his body fluids as determined by a process known as
13 absorption-inhibition. That means that if somebody is
14 an A secretor, he will secrete into his body fluids --
15 "His body fluids," I'm talking about now, would be
16 semen, saliva, perspiration, vaginal secretion, that
17 type of thing -- he would secrete, if somebody's an
18 A secretor, he would secrete A plus H. The B secretor
19 would secrete B plus H. And an O secretor would just
20 secrete H.

21 Q. And within your community of forensic serology is the
22 absorption-inhibition test an acceptable means, a valid
23 and reliable means to test the type of body fluids you
24 have just mentioned, saliva and semen, to determine if
25 someone is a secretor or not?

26 A. Yes, it is.

8
0
7
8
0
6

1 Q Are you likewise familiar with the Lewis blood system?

2 A I am.

3 Q Is that essentially an antigen system?

4 A Yes, it is.

5 Q And is that separate and apart, as it were, from the ABO

6 system?

7 A Yes, it is.

8 Q And is there a relationship between certain Lewis types

9 in the whole blood and whether or not that person is a

10 secretor or non-secretor?

11 A Yes, there is.

12 Q What is that relationship?

13 A There are two antigens that you detect in the Lewis

14 system. That's a and b. A person who is an a positive

15 and b negative within the Lewis system is a non-secretor.

16 A person who is an a negative, b positive is a secretor.

17 There is a third type, which is an a negative b

18 negative, which means that the person is either a secretor

19 or a non-secretor, and at that point you have to go to

20 the saliva to determine the secretor status of the

21 individual.

22 Q Then within your community, community of forensic serology,

23 is it accepted to make certain -- that one can make certain

24 inferences from an examination of whole blood to find out

25 a person's Lewis type as to whether or not that person

26 is a secretor or not?

1 A Yes. If you get a positive reaction for either a or b,
2 you can certainly make the determination whether that
3 person is a secretor or non-secretor.

4 Q And are there tests that are accepted within your
5 community as a valid and reliable means of testing for
6 a particular Lewis antigen in whole blood that allow you
7 to make this inference?

8 A Yes.

9 Q And is the micro -- microcapillary tube test one such test?

10 A That's one of the accepted systems, yes.

11 Q Are you familiar with the acid phosphatase test that is
12 performed on a stain as an indication of whether or not
13 the stain is in fact semen?

14 A A presumptive test for semen is the acid phosphatase test,
15 yes.

16 Q And is that accepted within your community as one
17 possible presumptive test to perform on a stain to make
18 a determination as to whether the stain is semen or some
19 other body fluid or some other substance?

20 A Yes.

21 Q Is -- it, of course, is possible to make that determination
22 from tests other than the acid phosphatase test when
23 we're talking about a particular stain?

24 A Yes. For the identification of semen, the acid phosphatase
25 test is normally one of the first tests that is done to
26 give you some idea or some indication as to whether a

0
0
7
8
0
8

1 stain that you're looking at is in fact semen or not.

2 Q Likewise, can you also just simply take the stain, look

3 at it under a microscope to see if there's sperm present?

4 A Yes. You would make an extract of that stain, and

5 certainly that will be a confirmatory test for semen.

6 If you found the presence of spermatozoa, then you know

7 that you have semen present.

8 Q And are you familiar with the -- the purpose for which

9 forensic serologists look for the presence or absence of

10 amylase in a particular stain when they're attempting to

11 make a determination as to whether or not the stain is

12 saliva or another body fluid?

13 A Yes.

14 Q And what is the purpose behind making that check?

15 A The purpose is that amylase is present in a number of

16 body fluids, but it's present in saliva in very large

17 quantities. And it can give you an indication as to

18 whether saliva is present or absent if you do an amylase

19 test or you look for the enzyme amylase.

20 Q Are there particular tests to detect the presence of

21 amylase that are accepted in your community?

22 A Yes.

23 Q Can you give us an example of one or two of those by

24 name.

25 A Yeah. There's a couple. An agar diffusion test for the

26 presence of amylase, whereby starch is incorporated into

0
0
7
8
8
9

1 an agar base and the amylase will in fact digest the
2 starch, and then an iodine solution is poured over the
3 plate afterwards, and where there's clear areas is where
4 amylase is.

5 Q Within your field, the field of forensic serology, is it
6 an accepted concept that you can distinguish between
7 individuals further than there ABO blood types?

8 A Yes.

9 Q For example, are there various enzymes that manifest
10 themselves in human blood?

11 A Yes, there a number of enzymes in fact in human blood and
12 other body fluids, too.

13 Q And is with the ABO groups system, is it accepted that
14 the enzyme -- these various enzyme types are inherited
15 genetically?

16 A Yes.

17 Q Likewise, do the various enzyme types that happen to be
18 in the body of a particular person remain constant
19 throughout the life of that particular person?

20 A Yes, it does.

21 Q Within your community, is there a procedure which is
22 employed to test various stains to determine what the
23 enzyme type of a particular blood stain is?

24 A Yes.

25 Q Is one of the procedures called electrophoresis?

26 A Yes. Electrophoresis is a system by which normally you

0
0
7
8
1
0

1 can separate out the different isozymes or fractions of
2 enzymes. And, you know, if they're polymorphic or if
3 they show differences between people, then electrophoresis
4 is a method by which this is normally done.

5 Q And for the layman in the courtroom, including myself,
6 could you define in a nutshell, if it's possible, what
7 electrophoresis consists of.

8 A Electrophoresis is basically a system whereby you have
9 some sort of support medium. In most cases, this
10 happens to be a gel type of substrate and, normally, like,
11 a -- a slab of Jello. Into that slab of Jello is inserted
12 bloodstains or the blood samples you wish to test.
13 There are chemicals and buffers which are associated, and
14 a series of conditions are going to be different depending
15 on the enzyme system that you're looking at. After the
16 insertion of the samples into the Jello and electric
17 field is applied to that slab. Under the influence of
18 the electric field, the enzymes separate out into their
19 various components.

20 These are normally colorless. You can't see them.
21 And you use specific biochemical stains in order to
22 visualize those enzyme components. And depending on the
23 position and number of those components will determine
24 for you what type you have.

25 Q Mr. Wraxall, I noticed when you described the procedure
26 that you used with "samples," plural. By that is that

1 an indication that there are certain controls or
2 standards that you use in this method of electrophoresis?
3 A. Yes. Most methods of electrophoresis will ^{be} very inefficient
4 if you only could apply one sample at a time. And you
5 can apply, depending on the system that you're using,
6 but the average is between nine and a dozen samples can
7 be applied to any one electrophoresis plate. Within that
8 plate, of course, you should normally run some form of --
9 of standard samples, known samples to you for two reasons.
10 One, to show that the electrophoretic system itself is
11 working and that the separation is adequate for
12 determination, and also to show that the reaction mixture
13 or the staining mixture that you use is working properly
14 so that you can visualize everything that's on the plate.
15 Q. In the past, have you yourself examined samples of whole
16 blood to determine what the ABO blood type was of that
17 particular whole blood?
18 A. Yes, many times.
19 Q. Could you estimate the number.
20 A. Thousands, probably.
21 Q. Likewise, with bloodstains, have you yourself analyzed
22 bloodstains to determine the ABO blood type of the
23 particular stain?
24 A. Yes.
25 Q. Approximately how many times?
26 A. It's -- it's hard to put a number on it. It's, over a

8
0
7
8
1
2

1 period of 20 years, I've probably looked at many
2 hundreds of bloodstains.

3 Q Likewise, have you performed tests to look for the
4 Lewis antigen in whole blood to determine if a person
5 was a secretor or not?

6 A Yes.

7 Q Again, on a number of times?

8 A Yes, not as many as the ABO system, because the Lewis
9 system has not been around for that long. It's probably
10 only been in the last maybe four or five years that
11 Lewis system -- the Lewis system has been used for
12 secretor status.

13 Q The procedure of electrophoresis, is that recognized in
14 your community as a valid and reliable means of enzyme
15 typing for dried blood, for bloodstains as well as
16 whole blood?

17 A Yes.

18 Q Have you likewise performed that particular type of test
19 in the past to determine the enzyme types of various whole
20 blood samples?

21 A Yes, I have.

22 Q And have you likewise performed that type of test,
23 electrophoretic analysis, on bloodstains to determine
24 their enzyme type in the past?

25 A Yes. And what I would say is a majority of times both
26 blood samples and bloodstains are run at the same time.

0
0
7
8
1
3

1 Q Once a stain is diluted so that it can be placed on the
2 glass slide plate, is the procedure involved in analyzing
3 whole blood and dry blood through electrophoretic
4 techniques essentially the same?

5 A Yes.

6 Q Have you likewise in the past qualified as an expert in
7 a court of law on ABO blood analysis, whether it's
8 whole or stain?

9 A Yes.

10 Q Approximately how many times?

11 A I have testified somewhere between, in this country,
12 approximately 50 to 100 times. Now, whether they were
13 on solely an ABO system or a combination of ABO and
14 electrophoretic techniques I can't tell you.

15 Q Have you qualified as an expert in this court -- in
16 courts in California?

17 A Yes, I have.

18 Q Other states in the country?

19 A Yes, I have.

20 Q And those would include which states?

21 A There's approximately, I think, 14 states. I have
22 qualified as an expert in Oregon, Washington, Nevada,
23 Ohio, Massachusetts, South Carolina, Georgia. There's
24 probably some more if you want to look at my vitae, give
25 you some indication.

26 Q The states that you have qualified in as an expert, they

007814

1 are indicated on the -- on one of the pages in the vitae
2 which has been marked as Exhibit 6, I believe?

3 A. That's correct.

4 Q. Have studies --

5 THE COURT: Counsel, may I see that while we're
6 waiting, unless you have need for it.

7 Q. (BY MR. KOCHIS:) Have studies been conducted on the
8 reliability and validity of the test procedures to
9 determine, for example, the various PGM types, for a
10 moment putting aside the area of PGM subtyping, through
11 the electrophoretic procedure?

12 A. Yes.

13 Q. And are you familiar with any of those studies?

14 A. Yes, I am.

15 Q. And can you recall the approximate year and the person
16 who conducted those studies and what the results were?

17 A. Yes. There's been a series of studies on PGM as an
18 individual system as opposed to combined with other
19 systems. And in 1967, the PGM system was reported in the
20 literature by Culliford out of the Metropolitan Laboratory
21 and there was a hundred percent accuracy on a large
22 number of blood stains in that study. Since then, there
23 have been other studies in 1974 by Zajac and Sprague,
24 where 20-month old bloodstains were successfully typed.
25 It does not give any indication of how many samples
26 were used in that study.

(No omissions.)

1 Q Mr. Wraxall, is it fair to say that when electro-
2 phoresis was initially developed, that the systems
3 were run -- by "the systems", I mean different
4 enzymes -- were run individually?

5 A Yes; that's correct.

6 Q And, for example, do the initial studies involving
7 reliability and validity of electrophoretic techniques
8 involve studies that were done on a single enzyme?

9 A Yes.

10 Q Likewise, with the EsD, I take it there is such an
11 enzyme that we can refer to in this courtroom by
12 those initials?

13 A Yes, we can.

14 Q Have studies been done on that enzyme with electro-
15 phoresis as a single system as to its accuracy and
16 reliability to determine the EsD type of a particular
17 bloodstain?

18 A Yes.

19 Q When and by whom and what were the results?

20 A There is approximately four studies that I have
21 references to. In 1975 there were two studies out of
22 England, one out of the Metropolitan Police Laboratory
23 by Parkin and Adams, and one out of another laboratory
24 by Hayward and Bosworth. In the Parkin and Adams
25 study, there was no problem with esterase D typing
26 in three-week-old stains; and in the Hayward-Bosworth

0
0
7
0
1
6

1 study, there was no problems up to one month, and
2 there they did approximately 200 stains.

3 Subsequently, there's been work by Blake and
4 Sensabaugh. That's not a published paper, but a
5 paper given at a CAC seminar, where work was shown --
6 where bloodstain work was done and shown to be
7 reliable; and then a further study in 1977 by Grunbaum,
8 Harmer, Del Re and Zajac where stains four weeks to
9 two months were successfully typed on bloodstains.

10 Q. Now, are what are called blind trials applied to this
11 test procedure to determine whether or not a particular
12 method is valid and reliable?

13 A. A blind trial -- you know, there's many different
14 definitions of a blind trial. In a lot of these sort
15 of studies that I was certainly familiar with, there
16 may not have been a bona fide blind trial in that
17 somebody was given X number of stains and had no idea
18 as to where they came from, and the best way to do
19 that would be a double blind study, which would be
20 done from an outside source. Most of the studies
21 that I was involved in in the London laboratory would
22 involve samples all of the time. As developments went
23 on, I would be running bloodstain samples. I may or
24 may not have known their type before I ran them, but
25 certainly what I would do is, within the development
26 stage when the results were read, go back and check to

007817

1 see in fact if that bloodstain type was -- was matching
2 with the original blood sample type, so there was no
3 sort of record kept. You didn't produce -- in most
4 examples of where studies have been done on electro-
5 phoretic typing, there's been no large-scale tables
6 and records kept where X number of samples were done
7 and that they were all double blinds. The majority
8 of times, speaking for myself and the way it worked in
9 the Metropolitan Laboratory, was that samples --
10 bloodstain samples were repeatedly being done on the
11 systems, and to make sure that there was no problems
12 or no errors creeping in; and if there was errors,
13 then obviously there was something wrong and that
14 needed to be resolved before (1) we would put it in
15 a casework or (2) that we would publish the results.

16 Q. Turning to the EAP enzyme, have studies been done on
17 the reliability and validity of the use of electro-
18 phoresis to type the different EAP types?

19 A. Yes.

20 Q. When and by whom and what were the results?

21 A. Again, there's several papers which were put out.

22 In 1974 a group of people, McWright, et al, from the
23 FBI laboratory, did some work on EAP typing on bloodstains.
24 Myself and a lady called Emes put out a paper in 1976
25 whereby we looked at 387 stains from two days old to
26 six weeks old, and all were reliably phenotyped.

0
0
7
8
1
8

1 Now, when I say reliably phenotyped, there might
2 have been some of those stains that did not give any
3 activity or gave weak activity and were not -- a
4 determination as to its type was not made, but where
5 a determination was made, they were all correct.

6 THE COURT: May I interrupt, please?

7 (Whereupon, there was a brief
8 interruption in the proceedings.)

9 THE COURT: Thank you.

10 All right. Please continue.

11 Q BY MR. KOCHIS: Mr. Wraxall, directing your attention
12 to the ADA enzyme, have there been studies conducted
13 on that particular enzyme and whether or not electro-
14 phoresis is a valid and reliable means of detecting
15 the different ADA enzyme types in bloodstains?

16 A The ADA system is a single system reported in Culliford's
17 book, The Examination and Typing of Bloodstains in the
18 Crime Laboratory. There has been no individual
19 publication in a scientific journal regarding the
20 reliability of ADA.

21 Q When you're talking about Culliford's book, directing
22 your attention to what has been marked for this hearing
23 as K-5, is that the particular book that you referred
24 to?

25 A Yes, it is.

26 Q Were you employed by the laboratory in London when

0
0
7
8
1
9

1 Mr. Culliford was doing that work?

2 A. Yes, indeed.

3 Q. And were you involved in that work?

4 A. Yes, I was.

5 Q. Turning to the AK enzyme, have there been studies
6 of the reliability and validity of electrophoresis
7 to determine the different AK enzyme types?

8 A. Yes. That was published in 1968 by Culliford and
9 Wraxall, and in that study stains up to three months
10 old have been very reliably typed in bloodstains.

11 Q. Directing your attention back for a moment to the
12 ADA, did Culliford's work indicate that you could
13 through electrophoresis validly and reliably type
14 bloodstains to determine the various ADA types?

15 A. Yes, it did.

16 Q. Is there a particular serum protein called a Gc?

17 A. Yes, there is.

3a Q. And have studies been conducted to determine whether
18 or not electrophoresis is a valid and reliable
19 technique to determine the various Gc serum protein
20 types?

22 A. Yes. There's been two studies on this, one by myself
23 in 1975. Fifty stains two to thirty-three days old
24 were all typed successfully. In 1977 Zajac and Grunbaum
25 showed that stains up to two months old had been
26 reliably typed.

0
0
7
8
2
8

1 Q Are you likewise familiar with a serum protein named
2 transferrin?

3 A Yes, I am.

4 Q And have there been any studies on the use of
5 electrophoresis to determine the various transferrin
6 serum protein types?

7 A This has been a system that has only been recently
8 utilized in forensic work, and some studies were done
9 in 1983 by Blake where he showed the use of the
10 transferrin system in bloodstains.

11 Q And does Mr. Blake's study indicate that you can with
12 the use of electrophoresis validly and reliably type
13 transferrin serum protein types in bloodstains?

14 A Yes.

15 Q Is there an enzyme called peptidase A?

16 A Yes, there is.

17 Q And, likewise, have studies been done as to the
18 reliability and validity of the use of electrophoresis
19 to determine the various peptidase A enzyme types?

20 A In bloodstains or bloodstains and semen?

21 Q Let's discuss them together as a group.

22 A Okay. There are two papers in fact where reliability
23 studies have been done, first of all, on bloodstains.
24 That was by Parkin in 1978, and on bloodstains he
25 found that it was reliably -- he was reliably able to
26 type peptidase A in bloodstains six to eight weeks old;

007821

1 and in 1981 he produced another paper where he showed
2 the reliability of typing peptidase A on semen stains,
3 and that was up to six weeks.

4 Q. Mr. Wraxall, now that you have mentioned typing for
5 enzymes in semen stains with the use of electrophoresis,
6 is peptidase A the only enzyme type, for example, that
7 is found in other body fluids, for example, semen?

8 A. No.

9 Q. Are there some enzyme types that exist in, for us
10 laymen, greater quantities and, therefore, are easier
11 to detect in semen stains than others?

12 A. Yes. Some enzyme types are there present in fairly
13 large quantities and therefore able to be detected.
14 There are others which are -- they are in such small
15 amounts that our detection system is not sensitive
16 enough to be able to put that -- to be able to
17 determine that.

18 Q. The detection system that is used to determine enzyme
19 types in semen, is that an electrophoretic technique?

20 A. Yes. It normally is the same as the system that you
21 use for typing bloodstains.

22 Q. Can you use, for example, a sample off a bloodstain
23 and a semen stain on the same plate when you look,
24 for example, for the peptidase A enzyme?

25 A. Yes, you can.

26 Q. Is the PGM enzyme an example of an enzyme that one is

0
0
7
8
2
2

1 able to type through electrophoretic techniques?

2 A. Yes.

3 Q. And have studies been done as to the reliability and
4 validity of electrophoresis to determine enzyme --
5 PGM enzyme types in semen stains?

6 A. Yes.

7 Q. And what do those studies indicate?

8 A. The studies -- and it was done by a group of people
9 out of the Metropolitan Police Laboratory by Price,
10 et al, and I believe that that was 1976, thereabouts,
11 whereby a large number of stains -- semen stains were
12 typed in the PGM system and the reliability was
13 established.

14 (No omissions.)

15

16

17

18

19

20

21

22

23

24

25

26

0
0
7
8
2
3

1 Q Is EsD an example of a particular enzyme that because of
2 the quantity with which it exists in semen stains is not
3 always able to be detected?

4 A Yes.

5 Q These -- the terms we have been using in the courtroom
6 in regard to this electrophoretic technique, reliability
7 and validity, essentially, in scientific terms, what
8 does reliability mean?

9 A Reliability?

10 Q Yes.

11 A Reliability is that if you took a technique and allowed,
12 say, ten qualified serologists to use that technique on
13 a particular bloodstain, they should all come up with the
14 same result.

15 Q For ex .ie, if Mr. Negus and I were qualified as
16 serologists, would reliability involve a situation where,
17 for example, in a blind setting if Mr. Negus and I,
18 using the same procedure, analyzed these portions of the
19 same bloodstain, we should receive the same results?
20 For example, the same EsD types, PGM types as well?

21 A You should, yes.

22 Q And does the term "validity" in a scientific concept
23 refer to the soundness of the theory -- the soundness of
24 the theory itself?

25 A Yes, I would agree to that.

26 Q Turning your attention to CA II, is there an enzyme that

0
0
7
8
2
4

1 in this courtroom we can refer to by initials and
2 numbers and CA II?

3 A. Yes. It stands for carbonic anhydrase, Roman numeral two.

4 Q. And have studies been done as to the validity and
5 reliability of electrophoretic techniques on enzyme --
6 excuse me, on bloodstains to determine their CA II
7 enzyme type?

8 A. Yes, there's three studies, one by Hughes in 1978, one
9 by Andrus in 1980 where 21-week old stains were determined
10 successfully, and a third study by Noppinger and Morrison
11 in 1980, where 15-week old bloodstains were successfully
12 typed.

13 Q. Are you familiar with haptoglobin?

14 A. I am.

15 Q. Is that an enzyme or serum protein?

16 A. It's a serum protein.

17 Q. Have studies been done as to whether or not, through the
18 use of electrophoresis, you can determine in a valid
19 and reliable fashion a person's haptoglobin type --

20 A. Yes.

21 Q. -- from a stain?

22 A. Yes.

23 Q. And are you familiar with any of those studies?

24 A. Yes. Haptoglobin was one of the earliest, in fact, I
25 think, one of the first electrophoretic markers that was
26 determined in bloodstains. And in 1966, Culliford and

0
0
7
8
2
5

1 myself produced a paper showing the reliability of
2 haptoglobin in three-month old bloodstains.
3 Q. Now, are there considerations that may exist in a
4 forensic laboratory for forensic serologists in typing a
5 bloodstain that may not exist for, for example, a medical
6 doctor in a blood bank who is typing a vial of whole
7 blood?
8 A. Yes.
9 Q. And is size of the quantity -- is the size of the item
10 you're about to examine one of those?
11 A. Yes.
12 Q. Okay. And on a small stain, is there often a problem if
13 you use single system electrophoresis in that you will
14 exhaust the stain before you run a sufficient number of
15 tests to discriminate between two or more persons?
16 A. Yes.
17 Q. With that concept in mind, did you design a multisystem?
18 A. Yes, I did.
19 Q. And is that for the use of electrophoresis to determine
20 the various enzyme and serum protein types?
21 A. Yes, it is.
22 Q. And in your multisystem, how did you group the
23 particular enzymes or serum proteins?
24 A. This was part of the bloodstain analysis project which
25 was founded by LEAA. And we were commissioned there to
26 look at a number, in fact, all available polymorphic

0
0
7
8
2
6

1 enzymes and proteins, and with the final result that
2 we should have a discrimination probability of one in
3 two hundred and that the final results should be done
4 on not more than three setups.

5 To obtain that discrimination probability, we had
6 to use at least eight proteins and enzymes. And to get
7 them into three -- only three setups, therefore, we had
8 to start combining some of the proteins and enzymes
9 together to enable that to be done.

10 Q Now, as a -- as a forensic serologist, do you testify
11 still in courtrooms as to bloodstain analysis?

12 A I do.

13 Q And do you testify for just the Prosecution or the
14 Prosecution and the Defense?

15 A I -- I testify for both Prosecution and the Defense.

16 Q And do you test stains both to exclude individuals and
17 to include individuals?

18 A We test stains to see in fact whether they match or
19 don't match anybody who may be involved in the case.
20 If it does not match, then that person is excluded as
21 donating that stain. If it does match, then he is
22 included within a group of people who could have
23 donated that stain.

24 Q For example, do you often testify or have you testified
25 for Defense lawyers that, based on the genetic makeup of
26 the blood of their client and the genetic makeup of a

0
0
7
8
2
7

1 bloodstain that was lifted from a particular location,
2 that the defendant could not have deposited that
3 particular stain?

4 A. I have done that, yes.

5 Q. Do you use your multisystem in analyzing blood and semen
6 stains in the work that you do?

7 A. Yes, I do.

8 Q. Are you the only forensic serologist in this country
9 that uses your multisystem?

10 A. No.

11 Q. Now, have you subjected your multisystem to any tests
12 to determine if it's a valid and reliable means of
13 enzyme typing through the use of electrophoresis?

14 A. I have.

15 Q. And essentially by "a multisystem" -- well, for us
16 laymen, if it's possible in a nutshell to explain the
17 difference procedurally in the use of a multisystem,
18 for example, for EsD and PGM as opposed to single
19 electrophoretic techniques for EsD, PGM.

20 A. Yes. It's fairly simple. On a single system, basically
21 you establish the parameters under which you can
22 successfully separate a given enzyme.

23 Let's take, for example, esterase D. Those parameters
24 are defined by experimentation. If they are acceptable,
25 then you can go ahead and use that system.

26 PGM would have a different set of parameters. And

0
0
1
8
2
8

1 you would use that system and you use the parameters
2 which you have established as reliable for that system.

3 With a multisystem what I intend to do is to alter
4 the parameters. That enables us to separate out two or
5 three enzymes at the same time. Within any electrophoretic
6 system, the enzymes from a bloodstain are all there.
7 For example, there may be eight or ten or even more
8 enzymes present in any one given bloodstain. And under
9 a set -- series of electrophoretic conditions, they may
10 all separate out.

11 Now, whether they separate out adequately enough
12 to be able to determine their types is another question.
13 And in most cases that is not -- that is not possible.
14 What happens with a multisystem is that those same
15 enzymes are actually separated out. And we have
16 established which enzymes separate out satisfactorily
17 under a multisystem set of parameters. And if they do,
18 what we go about trying to determine, or, separate. First of
19 all, is the enzymes and then find ways in which you can
20 detect the presence of those enzymes so that they don't
21 overlap with one another. Because that's the problem with
22 a multisystem if you're not careful, is that you can have
23 an overlap.

24 If, for example, you try to develop something like
25 a ten enzyme system on one given multisystem electrophoresis
26 plate, you might end up with not being able to determine

0
0
7
8
2
9

1 which enzymes are reacting where because they're
2 all masking each other. With the multisystem that I
3 developed, we try to make sure that there was no overlap.
4 And in fact there is no overlap with the systems that
5 are used in the multisystem.

6 Q Your multisystem?

7 A Yes.

8 Q How many different groups did you break the serum
9 proteins and enzymes down into?

10 A Essentially three. We labeled them Group I, Group II
11 and Group III.

12 Q Has that changed or is it still three, or do you now
13 have four?

14 A There's now four.

15 Q And is that a modification of your original system?

16 A It's just an addition. It's not a modification at all.
17 The original Groups I, II and III are still done basically
18 the same as they originally were developed with slight,
19 you know, fine tuning modifications.

20 The Group IV is a separate system that was developed
21 for us to look at race related markers.

22 Q What -- which enzymes is your system in the Group I
23 series designed to look for?

24 A Designed to look for three systems, three enzyme systems:
25 glyoxalase or GLO, ESD and PGM.

26 Q Which enzymes is your system designed to look for in the

0
0
7
8
3
0

1 Group II system?

2 A. In that system is three more enzymes: ADA, EAP and

3 AK.

4 Q. Your Group III system, is that a system designed to look

5 for enzymes or serum proteins?

6 A. Serum proteins.

7 Q. Which serum proteins?

8 A. Initially it was designed to look at Gc and haptoglobin.

9 And we have now added a third one, which is transferrin.

10 Q. And is there a system by which you look for the carbonic

11 anhydrase and peptidase A?

12 A. Yes.

13 Q. Is that now the IV system?

14 A. That's part of the Group IV system, yes.

15 Q. Are there any others that your system is designed to look

16 for in Group IV?

17 A. Yes. There's two other enzymes, or, one other enzyme

18 and one other protein, I guess. One is G6PD, and then

19 the other one is hemoglobin.

20 Q. Is there any problem that you're aware of in terms of

21 reliability and validity in the use of your system with,

22 for example, in the Group I system, not looking for all

23 three, for example, looking simply for the PGM and EsD?

24 A. No. Glyoxalase has always been a tricky system. Even on

25 an individual basis it has one that has not been very

26 easily adopted by a lot of people. And I do find that

0
0
7
8
3
1

1 some people have very good success with glyoxalase and
2 some people don't. And there's nothing wrong with just
3 looking, in fact, you could just look for PGM if you
4 were only well trained in the analysis of PGM. Then
5 until you were trained in the analysis of esterase D
6 or glyoxalase, I would not advise anybody to do it.

7 Q And essentially your -- your multisystem approach, for
8 example, as to Group I, would involve you looking for
9 three enzymes, the GLO, the EsD and the PGM, off the
10 same plate which is run one time?

11 A That's right, on the same piece of material.

12 Q And you may read the enzymes or you will read the enzymes
13 separately, but the plate is run once?

14 A That's correct.

15 Q On a single system, that plate would be run three
16 separate times?

17 A That's right. And there would be three different plates
18 and using three individual -- different pieces of
19 material.

20 Q And three portions of standards?

21 A Yes.

22 Q What tests have you subjected your multisystem to to
23 determine if it's a valid and reliable method of
24 conducting this electrophoretic technique on more than
25 one enzyme on the same plate?

26 A As part of the Bloodstain Analysis System, as part of the

0
0
7
8
3
2

1 project, as the methods were being developed, of course,
2 we would be subjecting them all the time to studies
3 involving bloodstains, because it doesn't matter how
4 good a -- a system is working on whole blood; if it
5 doesn't work on bloodstains, it's no use to a forensic
6 serologist. So as the methods were being developed,
7 of course, we would be running bloodstains all the time.

8 When we were satisfied that the methods were fully
9 developed and within the time constraints that we had,
10 we were then, as part of the project, that methodology
11 was subjected to an external blind trial in that
12 approximately, in fact, 18 bloodstains were submitted to
13 me and I had to run those 18 stains for all 18 enzymes
14 and protein systems using the multisystem as it had
15 been developed. There were approximately 144 readings
16 within that set of blood trials, and there was one
17 error.

18 Q. And to reference that particular procedure, was that some-
19 time between or during 1978 and 1979 -- 1977, 1978?

20 A. It was approximately sometime in January of 1978 that that
21 test was run.

22 Q. In 1978, were you also given the responsibility to train
23 approximately 94 people in the use of your multisystem
24 technique?

25 A. Yes. That was after the completion of the project.

26 What I might say is, though, that as part of the

007833

1 original project we were also asked to train four
2 individual serologists from four different crime
3 laboratories, and they were trained for two weeks at the
4 Beckman facility and then sent back to their laboratories
5 and sent blind trial samples, in other words, samples
6 that we knew the -- the enzyme types of. And they were
7 then asked to tell us what those types were. This was
8 known as a feasibility testing program, because it, again,
9 it was no good if only I could do the test or I could use
10 the methodology; it was important to make sure that
11 other people could be trained in that methodology and
12 were able to in fact determine the enzyme and protein
13 types on unknown bloodstains.

14 (No omissions.)

15
16
17
18
19
20
21
22
23
24
25
26

0
0
0
7
8
3
4

5-1

1 Q Now, Mr. Wraxall, those four people, they were all
2 trained in the use of your multisystem?

3 A That's correct.

4 Q And that involved their ability to read the various
5 enzymes we've talked about?

6 A That's correct.

7 Q Approximately how many readings were involved in terms
8 of blind studies for those four individuals during
9 the course of your follow-up feasibility test?

10 A In that, there were a total of 912 readings made by
11 the four people, and of those, only one reading was
12 made incorrectly.

13 Q And was that to you an indication that your multisystem
14 in terms of being used by persons other than yourself
15 was a valid and reliable technique to make the various
16 determinations as to serum proteins and enzyme typings?

17 A Yes.

18 Q Did you likewise continue to subject your system to
19 additional tests?

20 A Yes, I did.

21 Q And the next type of test would have consisted of what?

22 A After the completion of that project, we were given
23 another grant to complete the forensic serology work-
24 shops, which was basically teaching a large number of
25 people from across the country in the new methodologies
26 that have been developed. We had approximately 94

007835

1 different serologists attend the laboratory at SERI,
2 and we trained them for two or three weeks. The
3 training was depending on the experience of the
4 analyst, because we were receiving people who had
5 not done any electrophoresis typing at all, and so
6 they required an extra week to merely make sure that
7 they understood and learned all of the different
8 parameters that were involved.

9 As part of their training, at the end of each
10 course, they were given a series of blind trials in
11 my laboratory and a large number of readings were
12 obtained from them, and again we have over 3,000 --
13 approximately nearly 4,000 different readings. Out
14 of that, there were only 36 errors, but what I might
15 say too is that as part of that, in all cases where
16 the stain was repeated by them, the correct type was
17 obtained.

18 Q. Do you continue to this day to train people in the use
19 of your particular multisystem?

20 A. Yes, I do.

21 Q. And do you continue to keep tabs on the system, as it
22 were, with follow-up blind testing?

23 A. Yes. We give blind testing at the laboratory. If they
24 require stuff -- further blind testing when they go
25 back, we were happy to supply those to them at that
26 time.

5-3

1 Q Mr. Wraxall, directing your attention to a diagram
2 which we have placed behind you on the board, which
3 I believe for this hearing has been marked for
4 identification as K-1 --

5 A Yes.

6 Q -- starting with the Group I at the top, in your
7 community, in the community of forensic serology,
8 is the use of an agarose/starch gel considered an
9 appropriate gel to select in conducting an electro-
10 phoretic analysis to determine the ESD and PGM enzyme
11 types?

12 A Yes.

13 Q And are certain buffers required to be used when you
14 conduct this type of analysis?

15 A Yes. I mean, you can use different buffers, but the
16 ones I'm familiar with, the ones that were developed
17 under the multisystem concept, are those that are up
18 there.

19 Q Moving across the line, do you notice on the chart
20 for each group above the group we have "gel", then we
21 have the buffer with the description of the buffer
22 used, the pH at which the test was run, and the
23 various stains that were used in the staining procedure?
24 For the Group I, are you able to read all of those
25 on the chart?

26 A Yes, I can read those.

007837

5-4

1 Q On the chart as they appear, is that an acceptable
2 buffer, for example, to use on the Group I electro-
3 phoresis?

4 A Yes.

5 Q And the pH that appears on the diagram, is that an
6 acceptable pH at which to run the plate?

7 A Yes.

8 Q Is there -- how about the staining technique or the
9 use of those particular stains? Are those stains that
10 you recognize or --

11 A Yes. They're all recognizable to me as valid
12 procedures for that -- that system.

13 Q Likewise, on the diagram on K-2, directing your
14 attention to the same information that appears on a
15 line next to Group II which is in your system, I
16 believe the search for the various EAP, ADA and AK
17 enzyme types, is it acceptable to use simply a starch
18 gel medium when you run the electrophoresis for the
19 Group II enzymes?

20 A Yes.

21 Q And is there any -- do you have any quarrel with the
22 particular buffer that appears on that particular
23 chart or is this a proper buffer to use in the Group II?

24 A The buffer is fine for that system.

25 Q Likewise, with the pH and the particular stains that
26 were used, are those acceptable -- is this an acceptable

007838

1 pH in all stains for the Group II?

2 A Yes.

3 Q Likewise, for the Group III, the serum proteins, the
4 transferrin and the Gc, is it acceptable within your
5 field to run an electrophoresis run using an agarose
6 gel in the search for those serum proteins?

7 A Yes.

8 Q Is that an acceptable buffer, the one that appears on
9 the chart?

10 A Yes.

11 Q And how about the pH?

12 A Yes.

13 Q And by "yes", I assume you mean that would be an
14 appropriate pH to run that particular plate at?

15 A That's correct.

16 Q And is it proper procedure to stain the plate with an
17 antiserum?

18 A Yes. That would have to be a specific anti Gc serum,
19 if that's what you're looking for, an anti-transferrin
20 serum, depending on what you would -- what particular
21 protein you're looking for, of course.

22 Q And, likewise -- let me ask you with your current Group
23 IV system, do you recommend that the medium, the gel
24 to be used, is agarose or another medium?

25 A Agarose.

26 Q And the TRIS/phosphate, is this a buffer that you either

0
0
7
8
3
9

1 recommend or that you're aware is a proper buffer to
2 use?

3 A Yes. That was the buffer that was developed for the
4 use in the Group IV system.

5 Q Is a 7.4 pH proper on the Group IV?

6 A It is.

7 Q And the stains that appear there for the PEP A and the
8 CA II, do those appear to be appropriate stains to
9 use in reading the plate for those two enzymes?

10 A They do.

11 Q Now, you don't use an acrylamide gradient gel yourself
12 when you run your haptoglobin, do you?

13 A Not at this time. I have used the gradient gel. In
14 fact, I used it all the time and was part -- I was
15 part of the development of that in England, but now
16 I use just a straightforward non-gradient acrylamide
17 gel.

18 Q Is the use of an acrylamide gradient gel within your
19 community, within the forensic science community,
20 accepted as a valid and reliable gel to use when you
21 conduct an electrophoretic analysis of a stain to
22 determine the haptoglobin enzyme type?

23 A Yes, it is.

24 Q And the buffer that appears on that particular chart,
25 is that a buffer that's accepted in your community
26 as the proper buffer to use in that type of analysis?

0
0
7
8
4
0

1 A. Yes.

2 Q. Is the pH also considered proper?

3 A. Yes.

4 Q. Is there anything about the use of that particular
5 stain in the staining procedure looking for the
6 haptoglobin?

7 A. None whatsoever.

8 Q. Are you familiar with the terms of "wet stain" and
9 "dry stain" as they may relate to changes that may
10 occur within the -- a particular stain in the serum
11 proteins and the enzymes within the stain?

12 A. Yes.

13 Q. And, for example, wet stain changes to us laymen
14 would apply to what -- what condition would the sample
15 be?

16 A. In terms of -- basically, when you -- when blood is
17 spilled, there are -- it goes through a number of
18 changes. Most of the time it's going to dry fairly
19 quickly, but depending on the conditions under which
20 it is kept while it is drying would depend really
21 how fast or how slow it dries. Most times if there
22 is very little humidity, the stain is small, and the
23 temperature is room temperature -- and for that, we
24 will just use an arbitrary figure of 68 degrees -- the
25 stain is going to dry fairly rapidly and there is
26 going to be little or no alteration to the -- or

0
0
7
8
4
1

1 degradation of the blood.

2 If, however, you have a pool of blood on which
3 maybe a body is lying and it is in a very humid
4 atmosphere and the temperature is fairly warm, then
5 that blood, particularly if it is in a large pool,
6 will take a little bit longer to dry. It is possible
7 under some conditions that that will be a wet stain
8 and that it is drying slowly. Under those conditions,
9 you can see a certain amount of degradation of the
10 proteins and enzymes.

11 Q. If you come upon a wet bloodstain -- that's a
12 contradiction in terms. If you come across --

13 A. Well, I understand what you mean.

14 Q. Excuse me.

15 A. I understand what you mean.

16 Q. If you come across a substance that appears to be in
17 a liquid form, it appears to be blood, can you arrest
18 some of the potential wet stain problems that may arise
19 by drying the stain and freezing it?

20 A. Yes, you can.

21 Q. Now, do enzymes and serum proteins last forever?

22 A. Unfortunately, no.

23 Q. And would that include stains that are frozen as well
24 as stains that are left at room temperature?

25 A. Normally speaking, the quicker that a stain is dried
26 and the lower the temperature at which it is stored,

8
0
7
8
4
2

1 the longer it will last.

2 Q. When a stain doesn't last forever, I take it then
3 the enzymes and serum proteins undergo some type of
4 degradation?

5 A. Yes.

6 Q. And will this degradation often manifest itself when
7 you conduct an electrophoretic analysis of a stain?

8 A. I'm not sure I understand the question. Are you
9 saying that we lose the activity or --

10 Q. For example, when enzymes -- let me clarify that --
11 degrade, do they in fact lose their activity which
12 may affect your ability through the use of electro-
13 phoresis to get any reading whatsoever?

14 A. Yes.

15 Q. Mr. Wraxall, based on your reading in the field --
16 and I take it in addition -- well, let me not take
17 anything for granted. Let me ask you the question.
18 In addition to the articles that appear in your vitae
19 that you've written, have you read -- do you regularly
20 read in the field of serology?

21 A. Yes, I do.

22 Q. And do you regularly subscribe -- for example, does
23 your laboratory regularly subscribe to the journals
24 that come out in that particular field?

25 A. Yes.

26 Q. And based on the reading that you've done, based on

0
0
7
8
4
3

1 your experience and your education, do you have an
2 opinion as to whether or not within your community
3 the use of a multisystem, electrophoretic multisystem,
4 is a valid and reliable means to determine the type of
5 enzymes and serum proteins that we've discussed here
6 this morning?

7 A. Yes, I do have an opinion as to that.

8 Q. And what is your opinion?

9 A. My opinion is that the enzymes and protein systems
10 that we've discussed here this morning are reliable,
11 and that they are a valid means of typing blood and
12 other body fluid stains.

13 (No omissions.)

14
15
16
17
18
19
20
21
22
23
24
25
26

0
0
7
8
4
4

1 Q Are you the only person in your community that holds
2 that position?
3 A No.
4 Q And is that proposition likewise accepted by many serologists
5 in the forensic serologist community?
6 A Yes.

7 MR. KOCHIS: I have no further questions at this time.

8 THE COURT: Let's take the morning recess at this
9 time. Fifteen minutes.

10 (Recess.)

11 THE COURT: Have you concluded?

12 MR. KOCHIS: I'm asking permission to reopen direct
13 on a point.

14 THE COURT: No problem.

15 Q (BY MR. KOCHIS:) Mr. Wraxall, directing your attention
16 to what has been marked for identification in this
17 hearing as K-4, do you recognize what that is a Xerox
18 copy of?

19 A Yes.

20 Q And is that in fact a Xerox copy of a chapter that you
21 have written?

22 A Yes, it is.

23 Q In what publication or --

24 A That's a chapter on forensic serology in the Practice in
25 Law Institute's book on Scientific and Expert Evidence.

26 Q And was it essentially a chapter you wrote to inform lay

007845

1 people such as lawyers about some of the basic concepts
2 and terms of definition that we have talked about here
3 this morning?

4 A. Yes.

5 MR. KOCHIS: I have nothing further.

6 And, Your Honor, I would at this time offer that into
7 evidence for the Court to read at its leisure for an under-
8 standing of some of the terms we have been using in the court-
9 room.

10 THE COURT: If you promise to sit down so Mr. Negus
11 can proceed if we accept it.

12 MR. KOCHIS: Yes.

13 THE COURT: All right. It will be received.

14 THE CLERK: Is that No. 6, Your Honor?

15 MR. NEGUS: I think it's K-4.

16 THE WITNESS: K-4.

17 THE COURT: Go ahead, Mr. Negus.

18

19 CROSS EXAMINATION

20 BY MR. NEGUS:

21 Q. Mr. Wraxall, when you were listing the literature as to
22 the various enzymes, that literature was essentially
23 literature which had to do with reliable -- the reliability
24 of typing of the enzymes; is that correct?

25 A. In -- in bloodstains, yes.

26 Q. Basically most of the articles in the literature would

007846

1 state the procedures and then give a discussion of the
2 procedures and then give a -- give the results of the
3 testing of those procedures; is that --

4 A That's correct.

5 Q Does there also exist literature in forensic serology
6 of things that can go wrong with the typing of various
7 enzymes?

8 A Yes.

9 Q For example, have you yourself and Dr. George Sensabaugh
10 written -- written a brief piece on things that can go
11 wrong with typing of acid phosphatase?

12 A Yes.

13 Q In that particular -- in that particular article, do
14 you develop two rules that you say should be fulfilled
15 before a typing call is made?

16 A Yes.

17 Q What are those rules?

18 A One is for the use of adequate controls. And I believe
19 we recommend the use of a type BA and a type CB within
20 the EAP system. And the other one, I think, is to be
21 careful in allowing things to develop within the electro-
22 phoresis plate.

23 Q What -- why is -- why is that a problem?

24 A Heat can cause a problem with EAP. The three main types
25 in EAP, A, B and C, have different stabilities. And heat
26 denaturation can occur with EAP in that the Type A is

8
0
7
8
4
7

1 the most labile, followed by the B, followed by the C.

2 Q What problems does that cause in typing?

3 A It can cause problems in that you can get alterations

4 of Type B, for example, to a Type CB. These have been --

5 this -- this problem has been well known for sometime.

6 And it normally occurs because, within the EAP system,

7 there's a particular problem in that it's not simply a

8 question of separating the enzymes out. There is qualita-

9 tive differences but also quantitative differences.

10 Q That is to say that, for example, between a B and a C

11 you'll have bands in the same place, but the typing

12 involves the relative intensity of the bands?

13 A That's correct.

14 Q Do you also develop in that article a rule that you

15 shouldn't type just on the presence of one band?

16 A That's correct.

17 Q And that's because of this problem of -- of the

18 different bands disappearing at different rates?

19 A That's correct.

20 Q In the -- what sort of controls do you recommend to take

21 care of the problem of heating?

22 A The BA and the CB controls and also a type B, which you

23 can also include on the plate, would also take care of

24 this. Because if you have a known B and in fact it looks

25 like a CB when you finally develop the plate, then there's

26 an indication one of two things have happened: either the

0
0
0
7
8
4
8

1 sample is denatured itself or there has been a heating
2 effect caused in the plate.

3 Q So basically what you have to do is make sure you get
4 the correct result on your known samples in order to make
5 a call of the plate?

6 A That's right.

7 Q If you don't do that, the reliability of the procedure
8 can be adversely affected; is that correct?

9 A The reliability not of the procedure but the reliability
10 of the typing of the stains on that plate can be affected.

11 Q Were there any other problems or things that can go
12 wrong with typing of acid phosphatase which were
13 developed in that article?

14 A I can't recall offhand. I'm sure you've got a copy.

15 Q May I refresh your recollection?

16 Well, for example, showing you a copy of that article
17 from your library, I believe.

18 A Yes.

19 Q Would that refresh your recollection as to what the other
20 problems might be?

21 A Yeah. I mean, I can -- I can go through and read it,
22 if you'd like to point me in the correct -- in the --

23 Q Well, there's -- there's a list of four different --
24 four different things that can go wrong there.

25 A Yeah, sure.

26 Q One of them was the problem of heat, which you have

0
0
7
8
4
9

1 already mentioned.

2 A Right.

3 Q And what were the other three?

4 A The difference in intense -- staining intensity of the
5 isozyme bands, which we have already talked about,
6 correct?

7 Q How do you -- what -- what -- how do you prevent that
8 from causing mistyping?

9 A Again, by using controls. You just have to -- the --
10 the -- first of all, you use the control -- the controls
11 as I have mentioned before, and you also in fact only
12 make sure that you read when you have at least two
13 isozymes present. Okay. And that is because of the
14 subsequent dilution effects that you can get.

15 For example, this is mainly a problem between a B
16 and a BA. If you have a -- take a BA sample and dilute
17 it to the point the most intense band that is left is a
18 B band, okay, the faster B band, the A's and the C will
19 disappear. If you take a Type B and do the same thing to
20 it, the last thing that you're left with again is the
21 main type B band.

22 So we have found, though, that the A bands and the
23 C band in a BA can go out at about the same time. So if
24 you see a Type -- an intense B band and a C band and you
25 don't see any A bands, then you can fairly be safe in
26 calling it a B as opposed to a BA that is degraded or has

0
0
0
7
8
5
0

1 been diluted.

2 Q Another problem that you identified is a problem with
3 substrates; is that correct? What is that -- what is that
4 problem?

5 A The substrate I believe is -- what we're talking about
6 there is the affinity for different substrates within
7 the reaction. And I think we're talking about there as
8 to whether glycerol is included in the reaction mixture
9 or not.

10 Q Well, I believe that there's a separate -- separate
11 problem that with -- with glycerol -- in the one that's
12 listed on the board there, in the system that's listed
13 on the board there in K-1, glycerol is not used; is that
14 correct?

15 A That's correct.

16 Q So that problem wouldn't exist?

17 A That's correct.

18 Q But there is a separate --

19 A Yes, there is one here in fact where it talks about the
20 affinity for the substrate, and the substrate concentration
21 is important in that.

22 Q Okay. What -- what -- what kind -- what substrate are
23 we talking about there with the substrate?

24 A The substrate would be MUP or methylumbelliferyl phosphate.

25 Q And that is -- that is a chemical that is used in making
26 the -- the different bands fluoresce when they are

0
0
7
8
5
1

1 exposed to ultraviolet light?

2 A. Correct.

3 Q. How does -- how does -- how does that cause typing

4 errors?

5 A. I don't know that it does if you don't use -- if you use

6 enough or you don't use too much, and that's been

7 developed by experimentation. The amount that we use

8 and which has been recommended generally doesn't cause us

9 any problems that we have seen.

10 Q. Are there any things that can go wrong in the typing of

11 EAP that are not mentioned in that particular article

12 which was published in 1977?

13 A. Not that I can think of offhand. Those are the common

14 things that occur. I mean, you can get distortion of

15 your band patterns, you can get -- within electrophoresis,

16 a number of things can go wrong. But normally those are

17 very well controlled because you have standards on there

18 or control samples.

19 (No omissions.)

20

21

22

23

24

25

26

0
0
0
7
8
5
2

7-1

1 Q So, again, the existence of the control samples to the
2 known samples is the key to making sure there's
3 nothing going wrong with your system?

4 A Yes, indeed.

5 Q Without the use of known samples, is the system --
6 would the system be reliable?

7 A It can be. If you have enough experience, you should
8 be able to show that there is good activity and there
9 is good separation just using unknown blood samples.
10 Some systems you can get away without using control
11 samples. Others -- EAP I don't think that you should.
12 I think you should use some control samples, because
13 then you have the control of the degree of separation
14 and also the activity, and also it can give you
15 signposts as to indicate whether anything is going
16 wrong.

17 Q What other enzymes that you use in your multisystem
18 should you always be sure to include in a control?

19 A We recommend controls in all of the multisystem,
20 mainly because, for example, in PGM system, if you
21 have enough experience, you can tell those apart very
22 easily. You really don't need a control, but in a
23 multisystem, it's a good idea to have a known
24 control which will separate out all of the known
25 bands that can exist so that you show -- because of
26 the parameters are a little bit more carefully

007853

1 controlled within a multisystem concept. You can
2 then show that everything is working correctly in
3 terms of the separation at least.

4 Q So for the PGM you would use the heterozygote 2-1 as
5 your control?

6 A That's correct.

7 Q That would show all the different bands that you're
8 looking at?

9 A Correct.

10 Q And is that essentially the principle that you use
11 in the other serum proteins, basically the most
12 common heterozygote as your control?

13 A That is normally the way that it's done.

14 Q The reason that acid phosphatase has the two controls
15 is because there's -- in order to get all the
16 different bands, you need at least those two different --

17 A Well, the BA will show you all four bands, but we have
18 a quantitative difference as well as a qualitative,
19 so you want to be able to see that your CB, for example,
20 gives you a direct comparison when you are trying to
21 differentiate between a B and a CB on an unknown
22 sample.

23 Q So that's to make sure you've got the different
24 relative intensities there?

25 A Correct.

26 Q With respect to PGM, does there exist a -- in the

0
0
7
8
5
4

1 literature an article similar to that by yourself and
2 Dr. Sensabaugh on things that can go wrong with PGM
3 typing?

4 A. Not that I'm aware of.

5 Q. What about with esterase D?

6 A. Esterase D -- esterase D before the multisystem, there
7 was a potential problem with esterase D in that the
8 separation wasn't very good, and storage bands could
9 interfere with your interpretation and differentiation
10 between a 1 and a 2-1.

11 Q. That was using a starch gel procedure?

12 A. With a different buffer system.

13 Q. The agarose in the buffer system that you use in the
14 multisystem cleared up the storage bands to a certain
15 extent and made sure you got the proper separations?

16 A. Yes, it did. It increased the separation so much that
17 the storage band did not fall where the second band
18 came, which was what the problem was with the initial
19 system.

20 Q. There's a shadow now?

21 A. Yes.

22 Q. Any literature on things that can go wrong with
23 esterase D under the multisystem?

24 A. No, not that I'm aware of.

25 Q. What about with the glyoxalase 1?

26 A. Well, glyoxalase 1, I believe there's some reports.

0
0
7
8
5
5

7-4

1 Whether it's in the literature or whether I've heard
2 these verbally or whether I've seen it myself, you
3 can get an anodal shift of the banding, and that's
4 normally seen when you do not have a reducing agent
5 present. Glyoxalase itself is a system which, as
6 I testified earlier, has a few problems in whether
7 people have the ability to use it or not, and some
8 people do, and some people don't.

9 Q. What are those problems?

10 A. The problems is normally within the staining, and
11 there's a very fine balance. It's a two-staining
12 procedure. It's different from most of the other
13 enzymes that we look at, in that the glyoxalase
14 requires you to stain with one substrate and then
15 to overlayer with a second, and the balance between
16 the first and the second is very critical; and if you
17 throw that off balance, you don't get any result.

18 Q. When the -- when the multisystem was originally
19 developed on the gel for the Group I, you have right
20 now an agarose/starch gel; is that correct?

21 A. That's correct, yes.

22 Q. And your recommendation is that it be one percent
23 agarose, two percent starch?

24 A. It can vary. In fact, the difference between one percent --
25 originally, it was one percent starch -- excuse me --
26 one percent agarose, two percent starch. We have now

0
0
7
8
5
6

1 reduced that to one percent agarose, one percent starch.
2 The reason the starch is there is purely -- it has
3 nothing to do with the separation. It is purely for
4 the development of the glyoxalase.

7a 5 Q So if you weren't using glyoxalase in your system,
6 you wouldn't even need the starch?
7 A You don't need to use it, no.
8 Q And that's because the most sensitive way to stain
9 the glyoxalase requires the presence of starch in
10 the chemical reaction?
11 A Yes.
12 Q Will problems in not being able to stain the glyoxalase
13 correctly produce incorrect results?
14 A No. Normally, you get nothing -- normally, if you
15 can't stain it, you don't see anything at all. Even
16 your controls don't work, but you don't call anything,
17 because there's no activity.
18 Q Should there be any problems with mistyping glyoxalase
19 if you get a result?
20 A You have to be a little bit aware of storage bands,
21 and that applies to not only glyoxalase, but some other
22 systems too, and you need to know where they occur
23 and their intensity.
24 Q Do the tests that you've done establish that in the
25 hands of a competent operator that glyoxalase is a
26 reliable system?

0
0
7
8
5
7

1 A Yes.

2 Q And you've done innumerable blind trials of one --

3 one degree of blindness or another to confirm that?

4 A Yes.

5 Q In fact, that was part of the original contract that

6 you had with Beckman Aerospace?

7 A That's correct.

8 Q Are there any other problems that can lead to typing

9 problems with glyoxalase other than those that you've

10 already mentioned?

11 A Not that I can recall at this time.

12 Q Are there any things that can go wrong with esterase

13 D using the multisystem, the agarose to separate it?

14 A In terms of mistyping?

15 Q Yes.

16 A No.

17 Q What about in terms of -- of being unable to type?

18 A You can sometimes -- one of the problems that can arise

19 is that if you don't use a reducing agent, you can see

20 nothing at all, and by use of the reducing agent, you

21 can in fact revitalize that enzyme.

22 Q Is there anything about PGM which makes it difficult

23 to develop the visible stain like there is with

24 glyoxalase?

25 A Not so much. It just depends on whether there's

26 enough enzyme activity there to start with, but you

0
0
7
8
5
8

1 don't generally have a failure of the PGM staining
2 overall like you can have with glyoxalase.

3 Q. Is one of the advantages of the multisystem approach
4 that you can -- if you see a problem in one of the
5 enzymes in your group, you can -- that will alert
6 you to possible problems in the other enzymes?

7 A. Yes.

8 Q. In comparing the amount of PGM in the average person
9 with the amount of esterase D in terms of the
10 enzymatic activity, which one's going to be -- will
11 produce the greater amount of activity?

12 A. I don't know whether that study has been done. I
13 could tell you in terms of its stability.

14 Q. Which is the more stable?

15 A. PGM.

16 Q. Is it a normal occurrence to have a situation where --
17 where esterase D will come out clearly and the PGM
18 won't?

19 A. That's a possibility. We've seen that.

20 Q. And what causes that?

21 A. I don't really know. It may just be that the level
22 of detectability within that enzyme that the PGM has
23 gone off quicker than the esterase D for some reason.

24 I don't know.

25 Q. What if you had a whole plate, standards, what have you,
26 where the esterase D appeared considerably stronger

0
0
7
8
5
9

1 than the PGM?

2 A Then the possibility is that the PGM reaction was not
3 optimized.

4 Q What could cause that?

5 A Mainly, the liquid enzyme that is used in that
6 reaction is known as G6PD.

7 Q And what does G6PD have to do with it?

8 A G6PD is part of the reaction and is required. If
9 you leave G6PD out, you get no reaction going at all;
10 so if G6PD in fact is -- the enzyme activity is
11 reduced or you don't put enough in, then you can get
12 a weak or no staining activity at all.

13 Q The G6PD that you use to stain the PGM, is that the
14 same G6PD that you use that you're analyzing in your
15 Group IV system?

16 A Absolutely.

17 Q And that particular enzyme doesn't last very long;
18 is that correct?

19 A That's correct.

20 Q Can a weak or almost degraded PGM cause typing
21 problems if you use that in your stain?

22 A Yeah.

23 Q What are those?

24 A You may not see anything.

25 Q What if you see -- can it cause the sort of
26 differential problems that you discussed with respect

0
0
7
8
6
0

1 to -- to acid phosphatase where some bands will go
2 and others won't?

3 A. No.

4 Q. Are all the bands in, say, a PGM 2-1 the same?

5 A. Generally speaking, yes, they are -- no. That's not --
6 that's not true. Let's look at it from -- let's look
7 at in fact the PGM 2-1. There are four main bands in
8 those. We'll call them a, b, c and d, normally
9 speaking, the a and b being a little stronger than
10 the c and d, but if you lost c and d on a 2-1, you
11 have still got the a and b, and that's still a 2-1.

12 (No omissions.)

13

14

15

16

17

18

19

20

21

22

23

24

25

26

0
0
7
8
6
1

1 Q PGM subtyping by isoelectric focusing will just -- will
2 just be looking at those a and b bands; is that correct?

3 A That's correct.

4 Q Are there any rare alleles in PGM besides the two and the
5 one?

6 A Yes.

7 Q How many?

8 A I think there is a total of eight or nine more. That
9 was the last count. There might be some more that have
10 been developed.

11 Q Will the multisystem show those different variants?

12 A Yes.

13 Q All of them should be able to be picked up on the multi-
14 system?

15 A Yes.

16 Q What about esterase D? Are there any rare variants to
17 that?

18 A There is a couple. I can't remember how -- I remember
19 an esterase D 3, 4 and 5.

20 Q Will the multisystem show those and distinguish them from
21 the -- the 1 and the 2?

22 A 3 and 4, yes. 5, no. 5-1 and 2-1 on the multisystem and,
23 in fact, any conventional system look the same. You
24 have to go isoelectric focusing to differentiate that.

25 Q Isoelectric focusing for esterase D in stains over 48
26 hours is basically unreliable; is that correct?

0
0
7
8
6
2

1 A So it is said. I don't believe that.

2 Q That was -- you don't believe the -- the published

3 article to that effect?

4 A That's right.

5 Q What about glyoxalase? Are there any rare variants in

6 that?

7 A I don't know that there have been any reported in that.

8 Up to a -- just a couple of years ago there were no

9 reported variants, and I don't recall any reported

10 variants on the glyoxalase system.

11 Q What about the acid phosphatase system? Are there any

12 rare variants in that?

13 A Yes, there are.

14 Q How many?

15 A Well, I'll give you the alleles so that you know. There's

16 the R and there's the B -- excuse me, the D and the E.

17 Q Okay. Will the D the E and the R all show up on the

18 multisystem?

19 A The D and the E will. The R is a little bit, shall we

20 say, tricky to distinguish, between the R's and some of

21 the others. But there are ways in which you can get a --

22 an indication that you've got an R, and then you go to

23 another buffer system to check that out.

24 Q So you should be able to recognize at least the

25 possibility of an R by looking at the plate?

26 A Yes.

8
0
0
7
8
6
3

1 Q What about AK? Are there any rare variants to that?

2 A Yes, there are.

3 Q Will they show up on the multisystem?

4 A As far as I know, they will.

5 Q ADA?

6 A Yes. Oh -- I can't recall if there are variants or not
7 in ADA. I think there are. I think there is. I think
8 there's a couple. I think there's a 3 and maybe a 4.

9 Q Do they show up on the multisystem as well?

10 A As far as I know, they will.

11 Q What about transferrin? Are there rare variants of that?

12 A Well, there are variants of that, and I guess you could
13 call them rare, because the majority of Caucasians are
14 Type C, and in Caucasians there's CB's, and in blacks
15 there are CD's. And there are different types of D's
16 and different types of B's.

17 Q Will -- during -- using the -- the particular multisystem
18 approach, will those variants all show up on the plate?

19 A Yeah, B's and D's are very easy to distinguish.

20 Q What about Gc? Are there any rare variants to that?

21 A Oh, yes, a number of rare variants.

22 Q Will they all show up on the -- all show up?

23 A From the ones that we have seen, yes, they will. Now,
24 there are some which are very close to others. In other
25 words, some rare variants, you might have a difference.
26 For example, there's one known as a Chippewa and there's

0
0
7
8
6
4

1 one known as aborigine. And they're very close together.
2 And so you might have to go an isoelectric focusing to
3 sort that out.

4 Q If there were that problem when you're just looking at
5 the plate -- well, which allele do they look like, first
6 of all?

7 A They look like their own. I mean, they're a rare variant,
8 but the problem is to distinguish them between the two
9 rare variants. You can distinguish them from the common
10 types, but it's a question as to what name you put on
11 the rare variant.

12 Q So if you saw something on the plate that was rare, you
13 know it was rare and --

14 A That's right.

15 Q -- couldn't confuse it with one of the common ones?

16 A No.

17 Q What about peptidase A? Are there any rare variants to
18 that?

19 A Yes, there are. I think there's one rare variant of that.

20 Q And what's that rare variant?

21 A It's probably the 3, just because it's the way they name
22 things. It's very easy to -- that's got to be the next
23 one that they name. So it's probably 3.

24 Q Whatever it is, can it be distinguished using the multi-
25 system?

26 A To my knowledge, yes, it can.

8
8
7
8
6
5

1 Q What about a non-rare variant, the 8? Can that be
2 distinguished using the multisystem?

3 A No, it cannot. Only an 8-2 can be distinguished.
4 But an 8-1 and an 8 cannot.

5 Q Why can an 8-2 be distinguished?

6 A Because the banding pattern is different from a straight-
7 forward 2. The 8 comes -- an 8-2 in fact looks like a
8 2 but with a slower band. But the 8-1 looks like a 1,
9 and an 8 itself looks like a 2. So you need to go to
10 another system for -- for sorting that out.

11 Q If there -- okay. Well, in -- if you have an 8-1, then
12 you're not going to be able to -- you're not going to
13 be able to tell; is that right?

14 A That's right.

15 Q But if you had an 8-2 or an -- an 8-8, you should be able
16 to tell by looking at the plate that you have a problem
17 and then go to something else?

18 A Well, an 8-2, you can distinguish that fairly clearly on --
19 on the plate. The 8 you can't. The 8 and the 2 look the
20 same. The 8-1 and the 1 look the same. So, you know, they
21 are just exactly the same, and you call them a 1, where
22 in fact they might be an 8-1, but they're a 1 or an 8-1.

23 Q What about the carbonic anhydrase?* Does that -- anhydrase
24 Does that -- does that have any variants?

25 A Yes, it has three.

26 Q And can that be detected according to the multisystem?

*(phonetic spelling)

0
0
0
7
8
6
6

1 A Yes.

2 Q And with haptoglobin, using the -- the gradient acrylamide

3 gel, does that have any rare variants?

4 A Yes, it does.

5 Q How many?

6 A Approximately ten; might be some more.

7 Q And can all of those be distinguished using the gradient

8 acrylamide gel?

9 A You should see some variation. As to whether you can

10 tell exactly what it is, I'm not sure. You know, some

11 of the variants are very similar to each other, and they

12 it might be -- it might be not very easy to distinguish

13 between variants. You should be able to distinguish a

14 variant from a common type.

15 Q Can it make a difference with -- with the gradient

16 acrylamide gel what the concentration of acrylamides is,

17 that is, what the variation in gradients is?

18 A Sure, sure.

19 Q Are -- is one particular one more sensitive than others?

20 A Well, it depends on -- on the top level of -- the

21 concentration of the top part of the gradient. If you

22 go from, like, I think, the normal gradients are

23 something like 5 percent to 25 percent, that should

24 separate out everything very easily. There is another

25 gradient which runs from 5 percent to 16 percent, and

26 that -- at that point you can start losing some things

0
0
7
8
6
7

1 off the end of the plate. The -- the beauty of the
2 gradient system is that you can run it for days and it
3 doesn't go anywhere, where it just gets to its gradient
4 and stops. If you try that with normal electrophoresis,
5 you know, you're just going to lose everything on the
6 end.

7 Q Are there any things that can go wrong with -- with
8 transferrin with a -- in -- in making -- in the typing of
9 it?

10 A Yes.

11 Q What are those?

12 A The most common thing that can go wrong -- and "common"
13 is probably the wrong word -- but the thing that we have
14 noticed most often that goes is when you have a degradation
15 of the sample. And that starts -- you start seeing a
16 ladder effect. Instead of producing only one or two
17 bands, you start producing multiple banding.

18 Q Does that end up in the -- when it degrades long enough
19 with a shift of the band towards the cathode?

20 A Yes.

21 Q And it will reduce itself back to one band shifting
22 towards the cathode?

23 A Or two bands, depending on what you start with, yes.

24 Q In determining whether or not you have any problems with
25 a particular electrophoretic run, do you pay attention
26 to how far the -- the enzymes go?

0
0
7
8
6
8

1 A Yes.

2 Q If you were to end up with -- with -- with bands in a
3 position that was either too far or too -- too -- too
4 short than normal, would -- would that alert you to that
5 there might be some problems?

6 A Yes.

7 Q What kind of problems could cause that?

8 A There could be a, you know, either an addition or a
9 subtraction of the -- of something on the molecule to
10 give you a different charge, in which case the mobility
11 will be altered. It may also be -- just one of the
12 most common reasons for alteration of or mobility is
13 overloading of a sample. If you put too much sample in,
14 then you then basically block or slow down the electric
15 field to that sample and, therefore, everything doesn't
16 move to the same degree as, say, a standard sample would.

17 Q Can that cause unreliable typing results if you try to
18 read --

19 A If you try to read it, yes.

20 Q Basically in that situation you should just -- your typing
21 calls for -- should just be no -- no call at all?

22 A That's right.

23 Q In order to maintain reliability in general, does the
24 forensic serologist need to be quite ready just to say,
25 I can't type it"?

26 A Absolutely.

0
0
7
8
6
9

1 Q I mean, that in fact is the biggest key to -- to making
2 sure that you do have some sort of reliability; is that
3 right?

4 A That's right. And that will come with experience, too.
5 The more experience you get, the better you are at calling
6 something that may be a little weak but, for people who
7 are experienced -- and if you have any doubt at all, then
8 the general rule is not to call it.

9 Q What kind of problems can you -- what can go wrong in --
10 in typing Gc?

11 A Normally what happens with Gc is that the protein breaks
12 down and has a much faster moving mobility. That's not
13 really a problem. It's just that you don't see anything
14 in the normal areas, you just see things much more anodal
15 to the main typing area.

16 (No omissions.)

17

18

19

20

21

22

23

24

25

26

0
0
7
8
7
0

1 Q So in that sort of situation, if it's gone too far,
2 you don't call it, no matter what it looks like?

3 A That's correct.

4 Q By the way, there is literature on the -- on the
5 problem with transferrin that you mentioned; is that
6 correct?

7 A Yes.

8 Q And that's a couple of articles by Dr. Ed Blake?

9 A Yes.

10 Q Are there any literature on the Gc problem?

11 A I think the Gc problem was recognized a long time ago
12 back I think in 1963 when they found that the protein
13 was a little bit unstable, and in some bloodstain work
14 that was done, the sample could not be typed, and I
15 believe that they found that there was a faster-moving
16 what they called a degradation band or something like
17 that.

18 Q And do you know where that was published? Do you
19 remember?

20 A I can find it.

21 Q Would it help you --

22 A Is it by Nerstrom?

23 Q Huh?

24 A Nerstrom is the author, one of the authors?

25 Q I'm showing you a copy of the Home Office Central
26 Research Establishment Bibliography on Blood Typing,

0
0
7
8
7
1

1 I believe -- Bloodstains.
2 A. Yeah.
3 Q. And page 58 of that.
4 A. Yes. This one here?
5 Q. Right.
6 A. Yeah.
7 Q. That's the article by Nerstrom?
8 A. Nerstrom and Skafte, Jensen.
9 Q. It would be in the Acta Pathologica?
10 A. Yes.
11 Q. 1963?
12 A. Yes.
13 Q. Is there -- what are the typing problems connected
14 with peptidase A?
15 A. The normal problem we see with peptidase A is you
16 normally get just a smearing. There's activity there,
17 but it does not differentiate itself into bands, and
18 so at that point you just don't call anything, because
19 you can't make out any bands.
20 Q. What if you get smears in some bands? Can you reliably
21 type from that kind of --
22 Q. I think you have to look at the sample and look at that
23 a little bit more clearly. The best course of action
24 at that point is to go back and repeat it.
25 Q. What causes that smear?
26 A. I'm not sure. We don't know whether it's a breakdown

007872

9-3

1 of -- or it's just a lot of protein. It may be -- we
2 see it a lot with vaginal swab samples, and it could
3 just be from the vaginal secretion causing a lot of
4 smearing. You see it more in probably semen stains
5 than we do in bloodstains.

6 Q. What about with CA II? Are there any typing problems
7 with that?

8 A. CA II, the only thing that you have to be careful with
9 CA II is that CA I is also present and comes in
10 approximately the same position as the CA II Type 1
11 band.

12 Q. Will the staining procedure that's -- well, excuse me.
13 Will the antiserum that's used to develop -- I take it
14 back.

15 A. You don't use antiserum.

16 Q. I know. Will the staining procedure, the fluorescein
17 diacetate, react both to the CA I and the CA II?

18 A. Yes.

19 Q. What do you do to prevent that problem?

20 A. You normally find that the CA II is a lot stronger
21 than the CA I, and you just have to be aware of that
22 problem and be careful when you are interpreting.
23 Normally speaking -- excuse me. I believe it is --
24 it comes in the CA II Type 2 position, and the problem
25 then is whether you have a Type 2-1 or a Type 1 with
26 a CA I band.

0
0
7
8
7
3

9-4

1 Q So if you just had a regular carbonic anhydrase Roman
2 numeral II Type 1, you shouldn't have any problem?
3 A You might see the CA Roman numeral I band in the
4 2 position, but a Type -- the only time you would
5 confuse that with a -- or you should be careful of
6 not confusing that with a Roman numeral II Type 2-1,
7 which would have two bands; and in that case, the bands
8 are of equal intensity.

9 In the previous case where in fact it is a Type 1,
10 the bands are of unequal intensity.

11 Q In semen, are there relative -- is both carbonic
12 anhydrase Roman numeral I and Roman numeral II present?
13 A There is carbonic anhydrase activity. We believe it
14 is esterase activity, and there is no -- the CA II
15 type is not reflected in semen.
16 Q So if semen were being run in the multisystem Group IV
17 and you got a result for carbonic anhydrase II, you
18 shouldn't interpret that as a result?
19 A That's correct.
20 Q What problems are there in typing the haptoglobin using
21 the gradient acrylamide gel where you use approximately
22 four percent to thirty percent gradient?
23 A None that I can recall. The only thing that you should
24 be careful of is whether you have a degraded sample.
25 In that case, you can use the transferrin as an
26 indicator that you have a degraded sample. What

0
0
7
8
7
4

1 happens is you get a shift again cathodically in
2 some of the haptoglobin banding.

3 Q. What -- what proteins can you reliably get out of --
4 of semen?

5 A. What protein?

6 Q. Right. I mean what polymorphic proteins can you type
7 reliably from semen?

8 A. It is thought that transferrin is -- is present in
9 semen, but it's in less quantity than you would find
10 in blood, and the possibility is that you should --
11 that the same type that is reflected in a person's
12 blood is reflected in his semen.

13 Q. But that -- the techniques for that haven't been
14 developed?

15 A. Well, I don't know that they haven't been developed.
16 The rate of occurrence of a variant in transferrin is
17 very low. I would suspect that if you have a variant
18 in a person, that it might be worth looking at in
19 the semen stain of that person.

20 Q. Using the same --

21 A. Just using exactly the same technique. You might have
22 to concentrate up the stain a bit, but that's nothing
23 to do with this separation. That's just a sample
24 preparation problem.

25 Q. What about the other red cell enzymes? Do any of those --
26 which one of those actually appear in semen?

0078715

1 A PGM appears in semen. Peptidase A appears in semen.
2 Glyoxalase appears in semen.
3 Q Are those the three that can be reliably typed from
4 it?
5 A Yes.
6 Q What about AK?
7 A AK is present, but it's in very small quantities, and
8 you would really just have to look at it and see what
9 type you get. Again, you could use exactly the same
10 types. It's there in such small quantities that
11 probably you won't see anything.
12 Q Can you reliably type semen for PGM subtypes using
13 the isoelectric focusing?
14 A Yes, you can.
15 Q Are there any problems connected with PGM in semen
16 that there aren't -- that don't exist when you're --
17 when you're talking about blood?
18 A You have to be a little careful in that some semen stains
19 will show greater activity of the primary gene product;
20 in other words, in a Type 1, that will be the a band.
21 In a Type 2, that will be the b band, but that should
22 not be a problem. It just means that you have to be
23 aware that that does exist.
24 You should be aware that it has been reported that
25 when semen is mixed with saliva, you can get an
26 alteration of the band pattern.

1 Q. What tells you you have that?

2 A. It depends on how far and how long that semen and
3 saliva have been incubated together. There is a
4 general shift, and you will see Type 1, for example,
5 starting to -- the bands, being here, will start to
6 move together, and you see just general slight shifts
7 in mobility of the pattern; however, we find that if
8 you use a reducing agent, that does not occur, so as
9 long as you're using that, there should be no problem.

10 Q. Is that the same reducing agent, Cleland's reagent,
11 or something like that, mercaptoethanol?

12 A. Yes.

13 Q. In PGM, it's been found that in fact there are four
14 different alleles when at one point in time people
15 thought there were two; is that correct?

16 A. That's correct.

17 Q. Do those four different alleles all survive equally
18 long?

19 A. It is thought not.

20 (No omissions.)

21
22
23
24
25
26

0
0
7
8
7
7

1 Q Do the ones that are denominated plus last longer than
2 those which are denominated minus?
3 A They are. That -- it seems to be a suspicion. However,
4 that does not occur in all samples. We have seen one
5 plus-one minuses degrade at the same rates. We have seen
6 1- bands degrade a little faster than a 1+ band.
7 Q Would, in general, a 2- go faster than a 1-?
8 A I think they are about the same, but, again, this will
9 vary depending on the sample and the individual.
10 Q Can that -- if you -- just taking a hypothetical example
11 of a 2+1-, if you're just using the -- if you're using a
12 multisystem where you don't do isoelectric focusing, can
13 you have a situation where the 1- goes first and you're
14 left with just a 2 band?
15 A I don't think we've seen that on the -- on the conventional
16 group system, say, for example, the multisystem. You still
17 would see it looking like a 2-1. I guess if it was very
18 weak there might be a situation where you would get a
19 2+ and you would -- you would get the 2 band but not the
20 1 band.

21 THE COURT: Counsel, I have a luncheon engagement.

22 We can break any time.

23 MR. NEGUS: I was about to suggest that myself.

24 THE COURT: We're not going to conclude this morning,
25 so we have to have you back at 1:30, sir.

26 THE WITNESS: Okay.

1 THE COURT: We'll resume then.

2 (Whereupon the noon recess was taken at
3 11:55 a.m.)

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

80787-9

5 (Mr. Kochis is not present.)
6 THE COURT: Counsel, I want to compliment you on
7 your promptness. The bailiff came to get me even before
8 the appointed time.

MR. NEGUS: We have to wait for somebody, though.

10 (Whereupon Mr. Kochis enters the courtroom.)

11 THE COURT: Will you be using Exhibit 4?

12 MR. NEGUS: What is Exhibit No. 4?

13 THE COURT: I think that is the excerpt from the book.
14 If you're not using it for a while, then --

15 MR. NEGUS: No. Well, I was -- well, let me -- how --
16 how about this. There's a few things I was going to ask
17 about in that. Then I'll do it, and we can pass it up to you.

19 CROSS EXAMINATION (Resumed)

20 BY MR. NEGUS:

21 Q In the Exhibit 4, which is your chapter from the Imwinklereid
22 book, you -- you give a certain procedure which you
23 recommend as far as the sequence of analysis; is that
24 correct?

25 A. In terms of semen identification or just in general
26 terms?

007880

1 Q General terms.

2 A I don't recall that, but, you know --

3 Q If you look at Page 900 to 901 --

4 A Oh, yes.

5 Q And basically what you are talking about is a procedure

6 which will maximize the usefulness of tests in a situation

7 where there is limited sample; is that correct?

8 A That's correct.

9 Q And basically what you recommend is that -- is it

10 possible to type victims and suspects prior to starting

11 on an analysis of the stains?

12 A If you have a limited amount of stain, yes.

13 Q And why is that?

14 A Well, it -- it enables you to maximize the usefulness

15 of your typing. For example, there's not a lot of -- of

16 use in doing a series of, say, six tests where the

17 victim and suspect are all the same type, because if you

18 get that type you don't know whether that blood originated

19 from the victim or originated from the suspect. And what

20 you want to be able to do is to try to find some system

21 whereby they are different.

22 This also has the possibility of showing -- of

23 eliminating at least one person that's donating that sample

24 and possibly eliminating both people.

25 Q Let's take a situation in which you have -- where the

26 suspect is not in custody. You have multiple victims,

8
8
7
8
8
1

1 you have stains with limited quantity in them, and
2 from other sources you have a limited range of information
3 about your suspect. For example, you had a semen stain
4 from another state that you knew came from the -- from
5 your suspect. Could you still adapt that procedure
6 which you have outlined on Pages 900 to 901 to that
7 particular situation?

8 A To some extent. It would not be exactly the same, because,
9 as you said, you don't have a suspect in custody, so you
10 don't know what he is.

11 Q Well, you may know limited things about him.

12 A I may know limited things about him. For example, if you
13 know from his semen that he's a PGM 2+ 1+ and his ABO
14 type, you have limited information on that, certainly.
15 And you can then decide on the size of your bloodstain
16 as to whether you want to go after that or whether you
17 would want to look at some -- some other particular system.
18 It's -- it's sort of a -- it depends on the circumstances.
19 You have to make judgment calls all the way along when
20 doing the tests.

21 Q Certainly. However, there's no disadvantage to maximizing
22 the information you have before you actually start on a
23 stain with limited -- where there's a limited sample
24 situation?

25 A No. It's a good idea particularly if you find a -- a
26 bloodstain at a scene, there's a good indication that --

007882

1 there's a good possibility, shall I say, that that blood
2 came from the victim or victims. And if you have that
3 information, you can maximize that and possibly find a
4 couple of systems which were -- would enable you to
5 differentiate at least between the victims.

6 Q And just statistical information about the -- the
7 incidents of the various alleles of the various enzymes
8 and proteins in the general population can also allow you
9 to pick the -- the tests which have the greatest degree
10 of probability of picking up an unknown sample, too;
11 is that correct?

12 A That's correct.

13 Q That is, for example, you -- you mentioned earlier that
14 the AK system won't discriminate 90 percent of the -- of
15 the people, whereas some of the other systems will -- will
16 discriminate much -- much more highly. You wouldn't want
17 to just run an AK alone on -- when you didn't know who
18 the suspect was; is that correct?

19 A Not on limited samples --

20 MR. KOCHIS: Your Honor, I'm going to be imposing
21 an objection because I think we're starting to move not only
22 far away from the Kelly-Frye issue as to the reliability but
23 we're also starting to move far away from the reliability of
24 the procedure Mr. Gregonis used in this case.

25 It's one thing, perhaps, if he didn't follow
26 procedures that are accepted in the scientific community.

8
0
7
8
3

1 It's another thing if he chose to run a test for certain
2 enzymes whereas someone else may have chosen another set of
3 enzymes.

4 It's not a Kelly-Frye issue, and it's not a reliability
5 of a procedure issue.

6 THE COURT: To some extent, this has taken on the
7 appearance almost of a criminal deposition. And I suspect
8 that Counsel is preparing for trial down the road.

9 MR. NEGUS: Actually, I was just preparing for the
10 next motion with this particular series of questions.

11 THE COURT: Very well.

12 MR. NEGUS: I'm almost through. I mean, I think that
13 was the last question.

14 THE COURT: I tried to, you know, along -- on the
15 way I have given you some considerable latitude. I haven't
16 shortened you. But I recognize that we are -- I can tell
17 when we're away from that issue as well. So --

18 MR. NEGUS: I understand. I will admit, Your Honor,
19 that this particular -- that this question that I have --
20 the last series of questions is really directed towards the
21 Hitch issue rather than towards the Kelly-Frye issue. I
22 thought as long as we had Mr. Wraxall here now, that one area
23 I just wanted to cover, I would be wanting to have expert
24 opinion on that when we get to it. So I just thought it would
25 be easier.

26 THE COURT: I'll permit it. Go ahead.

0
0
7
8
8
4

1 MR. NEGUS: What was the last question?
2 (Whereupon the question was read.)
3 THE WITNESS: Answer, no, I would not.
4 (No omissions.)
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

007885

1 Q Under "Interpretation" on page 922 and 923, you list
2 eight different points that are important for a
3 forensic serologist to keep in mind when he is
4 interpreting the gels that he develops; is that
5 correct?

6 A That's correct.

7 Q Are those points points that are recognized in the
8 forensic serology community as being important
9 guarantees of reliability in using the methods that
10 you do?

11 A In general, I would hope that they would. I mean I
12 don't know that everybody follows this list or has it
13 written up on their wall. Not everybody, I'm sure,
14 would follow it exactly to the letter, but as a general
15 overall way of looking at interpretation, I would
16 expect most serologists to follow these basic
17 guidelines.

18 Q As you state in the article, the possibility of
19 misinterpretation can be minimized if in fact they
20 are followed; is that correct?

21 A Yes.

22 MR. NEGUS: I think I'm through then with reference
23 to K-4. If you'd like to have that, I can fetch it for you.

24 Q Can any polymorphic enzymes be detected in saliva
25 stains?

26 A Yes.

0
0
7
8
8
6

1 Q Which ones?

2 A You can detect PGM occasionally. It's not very
3 widely reported, and, in fact, the incidence of how
4 often PGM occurs in saliva is pretty small.

5 Q Approximately what?

6 A Well, I'd say probably less than about one percent.
7 Of the ones that I've looked at and where I've known
8 saliva to be present, the majority of times you don't
9 see any activity from the saliva, but I have noticed
10 it -- I know of one person who was a member of staff
11 in my laboratory in England who reliably gave a PGM
12 type from his saliva, but very few other people do
13 that. I mean it is unusual.

14 Q What about any other enzymes?

15 A Well, there's amylase, of course, and there's a lot of
16 it in saliva, and it has been reported recently that
17 there is polymorphism in that amylase, but that is not
18 routinely used.

19 Q Can amylase polymorphisms be reliably typed?

20 A That I don't know. I think that's the question as
21 to whether that is -- can that be reliably done.
22 It's a fairly recent innovation, and it has been
23 reported in the literature. I believe that in the
24 literature, it said that it was done on stains, but
25 I don't know whether in fact any studies have been
26 done on that, and certainly I haven't done any, so I

0
0
7
8
8
7

11-3

1 can't report to you whether that's true or not.

2 Q Do you know if the amylase polymorphism is -- has a
3 greater frequency among certain racial groups than
4 others, that is, the rare -- the rarer of the alleles?

5 A I -- I don't know offhand. I can't recall that.

6 Q Amylase 1 is the -- is the particular enzyme that's
7 present in saliva; is that correct?

8 A Yes; that's correct.

9 Q The presence of -- of amylase in saliva, and particularly
10 saliva stains, the particular test that you described
11 where the property of starch and iodine, the turning
12 in color, is used to detect amylase, is that test
13 sensitive?

14 A Fairly sensitive, yes.

15 Q Approximately what dilution of amylase and -- excuse
16 me. Of what dilution of saliva in whatever reagent,
17 saline or whatever that you're using, will that pick
18 up?

19 A Oh, at least one in two thousand, I'd say, at least.

20 THE COURT: Counsel, could I get you to hold the
21 thought there? They need me down in Department 1 for about
22 10 minutes, I'm informed.

23 MR. NEGUS: Okay.

24 THE COURT: All right. Take a brief recess.

25 (Recess.)

26 THE COURT: All right. Proceed.

0
0
7
8
8
8

11-4

1 Q BY MR. NEGUS: The absorption-inhibition test, is that
2 a sensitive test?

3 A It's not a simple yes-no answer. I mean it's sensitive --
4 it's an adequate test for the job that it's designed
5 to do. It really depends on your definition of "sensi-
6 tive". It is not as sensitive as absorption-elution.

7 Q Well, I suppose -- what -- for example, with saliva,
8 what kind of -- how dilute a saliva stain can you have
9 and still get a -- be sure you're getting a response?

10 A In the -- because the levels of ABO substances vary
11 from individual to individual, you should be using
12 undiluted saliva to be sure that you're calling a
13 non-secretor; however, if you have -- if you do the
14 test and you find secreted antigens, then you know
15 you've got a secretor, okay, and it could be a very
16 dilute stain, and you could still pick up the secreted
17 antigens.

18 Q But because of the variations, if you're going to say
19 "non-secretor" and you're just taking it out of a --
20 using saline to extract an unknown quantity of saliva
21 from a stain, mere negative results on an absorption-
22 inhibition doesn't necessarily prove non-secretor
23 status?

24 A That's correct.

25 Q Even if you have amylase present?

26 A Even if you have amylase present.

0
0
7
8
8
9

11-5

1 Q One of the problems -- well, you mentioned that
2 transferrin can get these bands and then eventually
3 shift to the cathode. That's because sialic acid
4 is being removed from it?

5 A That's correct.

6 Q And one of the common -- one of the common substances
7 that's found in red blood cell membranes which will
8 cause that removal of sialic acid is the -- a
9 substance known as neuraminidase; is that correct?

10 A That's correct.

11 Q Does neuraminidase affect PGM?

12 A Not to my knowledge. It depends on what you call --
13 you know, you ought to really think of it in terms of
14 what concentration we're talking about, because I
15 imagine that if you -- if you had enough concentration
16 of neuraminidase, which would not occur naturally, of
17 course, but if you put a large amount in, then you may
18 get all sorts of things to happen.

19 Q But if you just had a normal old wet sample --

20 A Well, you know, you're going to get a little bit of
21 neuraminidase in there. I don't know that that increase
22 in -- that there is an increase in neuraminidase in a
23 wet sample, and I don't know what sort of concentration
24 that you would need for any adverse reaction to occur.

25 Q If the neuraminidase were to cause an adverse reaction
26 in PGM, how would that affect the result that you saw

8
0
7
8
9
0

on the plate?

2 A. I don't know. I don't recall seeing that experiment.
3 (No omissions.)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

4

8

6

7

8

1

10

1

1

18

10

20

21

22

23

24

25

26

0 0 7 8 9 1

1 Q Does PGM undergo deamidation?

2 A I'm not sure.

3 Q Generally, deamidation causes what sort of -- of changes
4 in enzymes as far as their appearance on an electro-
5 phoretic plate?

6 A I -- I -- I don't know the answer to that.

7 Q On the Group IV that you do, you also look for G6PD and
8 for hemoglobin; is that correct?

9 A That's correct.

10 Q Both of those have variations which are more -- discriminate
11 better amongst blacks than amongst the other population?

12 A That's correct. That's the same for both peptidase A and
13 for all the systems on Group IV.

14 Q So basically when you have a situation where you're --
15 where there's something -- some reason to believe that
16 there may be a black involved, you use those to maximize
17 your chance of discrimination?

18 A That's correct.

19 Q Can Gc -- can G6PD be reliably typed in bloodstains?

20 A Yes.

21 Q Can the various black variants of hemoglobin likewise be
22 reliably typed in bloodstains?

23 A Yes.

24 Q When you type G6PD and hemoglobin using your Group IV,
25 does that cause any loss of reliability with respect to
26 PEP A or CA II?

0
0
7
8
9
2

1 A Not to my knowledge.

2 Q If -- well, the pH's that are used in the various groups
3 are not always that which is necessary -- would
4 necessarily be used if the enzyme was being typed alone;
5 is that right?

6 A That's correct.

7 Q What they attempt to do is to find a pH which will --
8 which will work adequately, if not optimally, for all
9 the different enzymes in the system?

10 A That's correct.

11 Q In a Group IV system, if one were to type for G6PD and
12 hemoglobin, would one have to alter a pH of seven point
13 four using an agarose gel and a TRIS/phosphate buffer?

14 A No.

15 Q Can polymorphic enzymes and proteins be typed from the
16 roots of human hair?

17 A Yes.

18 Q If you just find a hair at a crime scene which has its --
19 which has been, as it were, plucked from a head, can that
20 will that -- will one hair give you enough to -- to type?

21 MR. KOCHIS: Your Honor, I'm going to again interpose
22 an objection. We're way beyond Kelly-Frye, of course, with
23 hair follicles.

24 MR. NEGUS: Well, this is -- now I am actually using
25 the witness as my own witness to establish a Kelly-Frye
26 foundation for certain evidence that I'm going to be bringing

007893

1 out.

2 MR. KOCHIS: The problem I have with that is --

3 THE COURT: Have you finished your cross examination --

4 MR. NEGUS: What?

5 THE COURT: -- Mr. Negus? Have you concluded your
6 cross examination? You must do that before you take the
7 witness as your own.

8 MR. NEGUS: Let me -- I probably haven't. Let me
9 just --

10 THE COURT: Let's have you finish your cross, then
11 Mr. Kochis to finish his direct, and then, providing we're
12 not going to be too extensive, I don't mind the --

13 MR. NEGUS: It's not going to take that long.
14 I don't --

15 MR. KOCHIS: Your Honor, the practical problem that
16 we can save the Court some time if the Court was -- If I was
17 aware of the nature of the evidence, I might be willing to
18 waive a Kelly-Frye hearing on that particular issue.

19 THE COURT: Are you being premature in anticipating
20 an objection that may never come?

21 MR. NEGUS: It's got to do with my Hitch motion, Your
22 Honor, and basically --

23 THE COURT: If there's any doubt, let's go ahead.
24 But let's conclude with the matter at hand first.

25 MR. NEGUS: Okay.

26 THE COURT: It's easier for me to keep straight if I

0
0
7
8
9
4

1 know the demarcation line.

2 Q. (BY MR. NEGUS:) You spoke of wet state versus dry state
3 changes that -- that enzymes can undergo. What
4 significance is that distinction in forensic serology?

5 A. When a bloodstain dries slowly and -- and therefore is
6 a wet state type of stain as opposed to a bloodstain that
7 dries reasonably quick, you can possibly get some forms
8 of degradation processes occurring within that stain.
9 That is the one that is slowly dried, whereas in a dry
10 stain, that is, dried normally, you do not see the
11 majority of degradation processes. You will get a
12 degradation, anyway. In terms of that, you will just
13 lose activity. With wet state, you possibly can run
14 into other types of degradation processes.

15 Q. If you have whole blood that's just preserved in liquid
16 form even with an anti-coagulant in it, can you have
17 these wet state processes take place?

18 A. Yes.

19 Q. In the actual course -- well, most of the particular
20 procedures that you have up there take what, three hours
21 or so?

22 A. Totally together or -- or --

23 Q. For the run.

24 A. For each -- for each run?

25 Q. Yes, each run.

26 A. Well, some take -- Group I takes two and a half hours;

007895

1 Group II, overnight; Group III, about three to four
2 hours; Group IV, two hours.

3 Q On the overnight run, the Group -- the Group II, that
4 normally lasts what, about 16 hours, something like that?

5 A Yes.

6 Q The proteins on an overnight run are in a -- in a liquid
7 state; is that correct?

8 A That's correct, yes.

9 Q If one's not careful about the heating or the cooling,
10 I suppose, of the -- of the run, can you cause these
11 sort of wet state changes just while you're doing the
12 electrophoresis?

13 A You can cause that within the EAP system, which is part
14 of the Group II system. I don't think you can do it with
15 AK, and I don't think you can do it with ADA. But we
16 have seen heat problems develop in -- in the EAP system.
17 But that's when it was normally run at a much higher
18 voltage for shorter periods of time. And the higher the
19 voltage, the more chance you're going to have heat problems.
20 With this Group II system, it's a fairly slow, leisurely
21 run overnight where you don't have the high voltages and
22 you don't have the -- the potential for heat problems.

23 Q Can you have heat problems just from not having your
24 cooling system operating correctly?

25 A Oh, absolutely.

26 Q And can that produce those wet state changes?

0
0
7
8
9
6

1 A It can.

2 Q If one has a heating system that is not operating
3 correctly, is there any telltale signs that you will
4 see on your plates?

5 A Yes.

6 Q What are those?

7 A Probably goes off the end of the plate.

8 Q What if its moderately not working?

9 A Well, you will probably see, first of all, with -- with --
10 as the -- as you lower the cooling or remove the cooling,
11 there's no heat dissipation. And, under those circumstances,
12 the -- the enzymes as a whole migrate a lot faster. So
13 you will get some impression, or at least you will see
14 that your enzymes have moved a little bit further than
15 they should. That would give you a -- a clue as to what
16 may be going on. And then, of course, your controls,
17 if they're showing heat degradation problems, then at
18 that point you scrap the plate and do it again and check
19 the heating system or cooling system.

20 Q Could you also have situations where, like, in a plate
21 where you use 12 slots, that some of them will go faster
22 than others?

23 A Yes.

24 Q Is that also a sign of -- of improper cooling?

25 A That -- that is possible, that what you've got there is
26 a hot spot in the center of your plate and you get a

1 distortion, where the center portion of the sample, the
2 center samples move faster than the outside samples.
3 That also can be a function of bad contact with your --
4 between your plate and your -- your buffer.

5 (No omissions.)

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0
0
7
8
9
8

13-1

1 Q Between the plate and the buffer?

2 A Yes. You have a sort of bridge which can either be
3 a paper or a sponge contact; and if that contact is
4 not even all the way along, then you get better
5 contact, say, in the middle than you do on the edge.

6 Q So then what you're -- you mean between your plate
7 and your tank buffer?

8 A Yes. Excuse me, yes.

9 Q Can that cause typing problems?

10 A Well, it can. It may. It may not. You just have to
11 look at your controls.

12 Q When you're doing ABO typing, is it -- is it common
13 to use negative controls, that is, controls which
14 presumably don't have any stain on them at all?

15 A Yes.

16 Q Why is that?

17 A That is because you can find -- the ABO system is more
18 susceptible than any of the other systems that we use
19 in terms of spurious activity from other sources. The
20 most common source -- cause of spurious activity is
21 maybe perspiration, so you want to know -- and of
22 course, a person who is a secretor would secrete his
23 ABO blood group substances into perspiration; so if
24 you have a garment with a semen stain on it and that
25 garment is heavily saturated in sweat, then a good
26 proportion of the areas of that garment will respond

0
0
7
8
9
9

13-2

1 to ABO typing and show the possible ABO type of the
2 wearer of that garment. That then can cause
3 misinterpretations of the ABO results from the semen
4 stain.

5 Q If you have background, that is, your negative
6 control that shows some -- shows an activity from
7 some antigen or another, what does that tell you?

8 A Well, that -- well, it could be that, you know, you
9 have some sort of contamination on the substrate.
10 You want to know whether in fact the substrate under
11 the stain under question contains the same contaminant,
12 and so you would do a series of control areas right
13 around the stain to see whether in fact that's all
14 over it or not, and, again, it depends on the levels
15 that we're talking about. If it's just a very small
16 amount, then it's probably not going to interfere.
17 If it's a large amount, then you may not be able to
18 make any interpretation as to the semen result.

19 Q What about with blood, the same?

20 A Blood, the same thing on the ABO system, yeah.

21 Q Are the negative controls as equally important for the --
22 for the electrophoretic testing?

23 A No.

24 Q Why is that?

25 A Because you do not see the same problem. We don't
26 know of any -- we don't know that perspiration, or any

0
0
7
9
0
0

13-3

1 of those contaminants that could be found on clothing,
2 causes any problems in enzyme typing.

3 Q A person's -- could the -- could the sweat from an
4 analyst himself cause typing problems with blood?

5 A In terms of the ABO system, yes.

6 Q In terms of the enzymes, no?

7 A No; that's right.

8 MR. NEGUS: I have nothing further until I have
9 some questions of my own.

10 THE COURT: Mr. Kochis?

11 MR. KOCHIS: Yes, Your Honor.

12

13 REDIRECT EXAMINATION

14 BY MR. KOCHIS:

15 Q Mr. Wraxall, directing your attention back for a
16 moment to the multisystem, and specifically with your
17 Group I system, if a serologist chose, in employing
18 your Group I system, to do the PGM and the EsD and
19 not the GLO, would that procedure in and of itself
20 have any potential effect on the reliability of the
21 PGM and the EsD readings?

22 A No.

13a Q Likewise, you mentioned on cross-examination that the
23 starch, I believe, is placed in the gel for the Group I
24 to help assist in the analysis of the GLO?

25 A That's correct.

8
8
7
9
0
1

13-4

1 Q If a serologist in using your Group I system simply
2 looks for PGM and EsD, but uses the starch/agarose
3 gel, is there anything wrong with that technique?
4 A Nothing whatsoever.
5 Q You testified this morning on cross-examination in
6 response to some questions Mr. Negus asked you about,
7 for example, a situation where you might not be able
8 to find enzymes that are more hardy and detect the
9 presence of enzymes that are less hardy, and the
10 example I believe you used was PGM and EsD. Do you
11 recall that?
12 A I do.
13 Q Does the actual concentration or quantity of the amount
14 of the particular enzyme, for example, PGM or EsD, vary
15 from one person to another person?
16 A I'm sure it does.
17 Q In a situation where in analyzing a given stain, you
18 might detect the presence of, for example, EsD and
19 not the presence of PGM, could that be a result of the
20 relative concentrations of those two enzymes in a
21 particular person?
22 A That's a possible explanation, yes.
23 Q Likewise, with your Group V system, if a serologist --
24 Group IV system. Even at this distance, I can see IV --
25 a serologist who would only use the system as to your
26 PEP A and your CA II and not for the G6PD, would that

007902

1 procedure in itself bear any effect on the reliability
2 and validity of that person's analysis as to the CA II
3 and the PEP A?

4 A. No.

5 Q. The -- the peptidase A 8-1 and 2-1 types that
6 Mr. Negus talked to you about this morning, are those
7 subtypes of any particular peptidase A enzyme itself?

8 A. They're not, strictly speaking, subtypes. They are a
9 separate -- they are a response to a separate allele,
10 but the 8-1 and the 1 are indistinguishable by the way
11 that it's done here, okay, and so is the 8 indistinguish-
12 able from the 2 as by this technique and as by most
13 techniques, in fact. You need to use a specialized
14 buffer system; and even when you use it, it's not
15 always very clearly separated. It's a very close
16 separation that we have not gotten a good handle on
17 in terms of separating the 1's and the 8-1's from
18 themselves.

19 Q. Likewise, with PGM subtyping, is the subtyping a
20 separate procedure that allows you to further
21 differentiate between various PGM standard types?

22 A. That's correct.

23 Q. Approximately how long has electrophoresis as a
24 technique been used to detect the various PGM enzyme
25 types in terms of years?

26 A. Approximately 15 years I've been associated with it.

0
0
7
9
0
3

1 In fact, you know, I was certainly one of the first,
2 I believe, to be using it. It was developed in the
3 Metropolitan Police Laboratory in around about '66,
4 '67. It was published in '68, and we had been using
5 it for approximately a good year by the time it was
6 published, I'm sure.

7 Q And how long have you been using -- how long has
8 electrophoresis been used by your community to
9 determine the various EsD enzyme types?

10 A EsD has been going since at least probably '75, I'd
11 say.

12 Q And the EAP?

13 A EAP, that was reported in -- I gave a paper on that in
14 I think '72. Let me see here. It was published in
15 '76, but I believe I gave a paper in '74, or something
16 like that; so it's been going a good 10 years, I'd
17 say.

18 Q The AK and the ADA?

19 A AK and ADA were done before. They were back in 1970.
20 They were certainly on line there, and AK was on line
21 in 1968.

22 Q And when you use the term "on line", what is that
23 referring to?

24 A Meaning that it was used routinely in casework analysis
25 by myself.

26 Q And the serum proteins, the Gc and the transferrin,

8
8
7
9
0
4

1 how long has electrophoresis been used by your
2 community to detect the various serum protein types?

3 A. The Gc, I was using that back in 1975, and perhaps a
4 little bit before then. By this technique, though,
5 a multisystem's a little bit different technique,
6 but certainly it's been typed for, you know, nearly --
7 nearly 10 years.

8 And what was the other one you gave me?

9 Q. Both the serum proteins, both the transferrin, and
10 the Gc.

11 A. Okay. The transferrin has not been -- it's been known
12 for some time. I mean transferrin was reported back
13 in 1957, but because of the low frequency of occurrence
14 of variants in transferrin, it's not very often used,
15 and so work on stains has only been going on that
16 around in the order of about two years.

17 Q. With the Group IV system, those particular enzymes,
18 the peptidase A and the CA II, how long has electro-
19 phoresis been used to detect those different types?

20 A. Both of those were reported in the literature in 1978,
21 and I'm sure that they were being done in -- certainly
22 when I left England, they were being done, '77, so it's
23 probably been as far back as '76.

24 (No omissions.)

25

26

0
0
7
9
0
5

1 Q And the haptoglobin?

2 A The haptoglobin has been around for a fair amount of time,
3 since 1966. It's been around nearly 20 years. Modifications
4 have been made since then.

5 The gradient has been around since at least 1970,
6 probably a couple of years before that.

7 Q Is the period of time over which your community has used
8 electrophoresis to determine these various enzyme types
9 an indication to you as to its reliability and validity
10 to make that determination?

11 A Certainly. I mean, the longer that they have been in use,
12 the more likely that, if there are problems that cause us
13 to misinterpret that, those would have surfaced.

14 Q Directing your attention to the chapter that we have
15 introduced into evidence, the K-4 which I believe the
16 Judge has, and I have an additional copy, on Page 901, the
17 four criteria that Mr. Negus talked to you about after
18 lunch as to considerations you often would take into
19 account in conducting serological examinations, do you
20 have those in mind?

21 A Yes.

22 Q And the fourth one, determining the genetic makeup of the
23 victim and suspects in determining what type of case you're
24 going -- what type of analysis you're going to perform,
25 that, of course, assumes in a particular case that you have
26 the luxury of samples from not only your victims but

8
0
7
9
0
6

1 suspect or suspects at the time you have to make that
2 decision; is that true?

3 A. Yes. And that decision and in fact that determination
4 is normally only done when you have limited sample.
5 If you have unlimited sample, there is no need to -- in
6 fact to determine -- there is no need to have both
7 parties. I mean, you normally would like to have a
8 victim because you want to see whether it's his blood or
9 not. But you don't necessarily have to have anybody in
10 custody or even, you know, suspected of being the
11 assailant.

12 Q. And is it fair to say that, even with the best of
13 efforts, enzymes and serum proteins do degrade with time,
14 even they're dried -- even if the stains are dried and
15 frozen?

16 A. Yes.

17 Q. So is there an interest, in a case where a suspect is
18 at large and you're not aware as -- aware as to when or
19 what period of time you're going to apprehend him and
20 obtain a complete genetic profile, in starting to work
21 on the stain?

22 A. I would -- I would take that approach, certainly, because
23 it can then be used a potential evidence for including
24 or excluding possible suspects.

25 Q. In a situation in which you have a known number of
26 victims, for example, too and you have a possible suspect

0
0
7
9
0
7

1 and you're able to, through serological testing, obtain
2 even a limited genetic profile, for example, of certain
3 enzyme types, and you have a situation where the two
4 victims and the possible suspect have the same enzyme
5 type in a given enzyme, whether it's ADA or AK, is there
6 still the need or the desirability for the forensic
7 serologist in running a complete genetic profile of the
8 stain, even though your one suspect or possible suspect
9 and victims may have a particular enzyme type in a
10 particular group? Or is the question too wordy?

11 A It's a little wordy, because there are other things
12 that might come into play there, you see, because you --
13 you gave the example of ADA and AK. Well, in that
14 situation, you would be running EAP as well, and EAP has
15 good discriminating probability as opposed to ADA and
16 AK on their own.

17 Q Let me ask the question real quick. If you have a
18 potential suspect, would a forensic serologist, forensic
19 scientist still want to conduct a complete genetic
20 profile of the stain?

21 A Yeah.

22 Q And would a reason for that be to discover the possibility
23 of other persons being at the crime scene?

24 A Yeah. There is two possibilities. First of all, you
25 can -- the possibility is that if you conduct that
26 experiment and you find something that does not match a

0
0
7
9
0
8

1 particular marker in a suspect, then he is excluded as
2 depositing that stain. If on the same analysis that
3 stain could not have originated from your victim or
4 victims in the case, then you have obviously got another
5 person involved.

6 Q Likewise, directing your attention to the factors that
7 appear on 922 and 923 of your article, specifically,
8 factor No. 7, where you mention that the opinion of
9 a second expert is invaluable, do you have that in mind?

10 A Yes.

11 Q And by putting that in the pamphlet, did you mean to say
12 that under no circumstances should a serologist ever make
13 a call without a second serologist standing there looking
14 at the plate?

15 A No.

16 Q The wet stain changes that may occur in a blood sample
17 which is preserved, can those in part be alleviated by
18 making a stain on a swatch such as a cloth and then
19 freezing the sample?

20 A If you -- what, before degradation occurs, you mean?

21 Q Yes.

22 A Yes, certainly. I mean, when you have a fresh sample,
23 one of the good ways of preserving that fresh sample is
24 to make a stain of it and freeze the stain after it's
25 dried.

26 Q Likewise, the wet stain changes that Mr. Negus talked to

0
0
7
9
0
9

1 you about shortly before he ended his cross examination
2 that may arise, for example, with EAP or the other
3 enzymes due to changes that may occur during a 16-hour
4 run, if those type of changes would occur, would you
5 expect those changes to manifest themselves on the plate
6 on the standard?

7 A. Certainly.

8 Q. And is that one of the reasons why you use a standard?

9 A. Yes.

10 Q. Is photographing the plates a method of preserving the
11 conditions under which the plate was run in terms of
12 reliability and validity?

13 A. Yes, it certainly -- a photograph of the finished and
14 completed run gives you or gives somebody else the
15 opportunity to examine that and see whether in fact the
16 standards are there and whether they are correctly
17 separated and whether there seems to be any distortion
18 on the plate or any problems with the plate.

19 Q. In your experience, are photographs always as clear as
20 the actual plate itself?

21 A. No, they are not.

22 Q. Okay. Have you yourself had situations where you have
23 photographed plates and you would not feel comfortable
24 calling a particular enzyme type off of a photograph when
25 you felt comfortable calling it off of a plate?

26 A. Yeah, many times. You know, when you have weak stains,

0
0
7
9
0

1 you quite often cannot see any representation in the
2 photograph but it's quite clear on the actual plate
3 itself.

4 Q In a situation where that may occur, does the photograph
5 still provide you any useful information as to whether,
6 for example, any wet stain changes may have occurred
7 during the photograph -- during the electrophoretic run?

8 A Yes. As a general rule, you know, wet stain changes do
9 not occur during electrophoretic analysis. It's unusual
10 for that to occur. But certainly a photograph will give
11 you an idea as to whether any problems have arisen in the
12 course of the run or the development of the reactions.

13 Q Will that include, for example, the band -- the banding
14 patterns of the standard?

15 A Yes.

16 Q And where on the plate the -- the bands show up?

17 A Yes, how far they are separated, in fact if they are
18 adequately separated, if they've gone too far, if they've
19 gone too short, whether there's distortion to the actual
20 pattern, whether nice straight lines or whether they are
21 bowed; all of this can give you information as to whether
22 the plate was run correctly.

23 MR. KOCHIS: Thank you.

24 I have nothing further.

25 THE COURT: Anything else on cross, Mr. Negus?

26 MR. NEGUS: Yes, recross.

0
0
7
1
9
1

1 RECROSS EXAMINATION

2 BY MR. NEGUS:

3 Q One thing I forgot to ask on my first cross. In semen,
4 can you get -- if you ran a semen stain on the Group I,
5 would you get an EsD result? Is it possible to get an
6 EsD result?7 A It is possible to get it. The EsD occurs in the
8 spermatozoa, normally, of the seminal fluid. And if you
9 have a very good, high concentration of sperm, it's
10 possible that you will see an esterase D result from the
11 semen.12 Q But that's considerably rarer than getting a PGM out of
13 the Group I?

14 A Yes.

15 Q In determining the relative concentrations in a particular
16 person of, say, EsD and PGM or any other set of enzymes,
17 the key to making a determination as to whether the
18 variation is in your plate or it's in the person would
19 be to look at the standards that you're using on the
20 plate; is that correct?

21 A Yes, that would certainly help, yeah.

22 Q Right. If -- if a standard, for example, if your -- if a
23 standard person in your laboratory that was used for a
24 certain particular -- for a particular purpose usually had
25 a lot more PGM than they did EsD, and that all of a sudden
26 you see them with a weak or disappearing PGM, you would8
8
7
9
1
2

1 know you had a problem?

2 A Yes.

3 Q Generally, in photographing plates, the -- the -- there's

4 three of them you do essentially using the fluorescent

5 properties of the -- of the stain; is that right?

6 A That's correct.

7 Q That would be the EAP, the EsD and the CA II?

8 A That's correct.

9 Q Are those photographs harder to do than the other ones?

10 A Yeah. You normally need some filtering to go on it

11 physically. It depends on how you're photographing.

12 We photograph all our plates with a Polaroid, and it's

13 very high speed film. And just because of that high

14 speed of that film, you know that the reproduction is

15 not going to be that superb. I mean, you know, you

16 could get better results, I'm sure, by doing 35 millimeter

17 and getting all the filters set up and so on and so forth.

18 However, that's very time consuming. And, in the mean-

19 time, you can get diffusion going on. So -- but even with

20 a Polaroid, a black and white and high speed film, that

21 normally works very well, but you need some sort of

22 filtering, mainly to filter out the background ultra-

23 violet that comes in there.

24 Q Those problems, however, don't exist with -- with your --

25 with all the other stains, the ones that you just take in

26 regular old laboratory light; is that correct?

0
0
7
9
1
3

1 A The visible light ones? Not in terms of floourescence.
2 You don't need -- you can use filters, but as a general
3 rule you don't need them.
4 Q What -- basically these -- these particular stains,
5 they're -- they're sort of a dark blue for the most part?
6 A Yeah. Most of the part from the glyoxalase, most of the
7 reactions we use are a yellow -- ends up with a yellow
8 background, and the enzyme activity, the areas of
9 enzyme activity are blue.
10 Q So you have a really nice black and white contrast?
11 A Yes.
12 Q Shouldn't be any problems getting it to come out just
13 taking them by a regular old photo if you have it -- if
14 the plate's developed correct?
15 A Yes.
16 MR. NEGUS: I think that's the end of the cross.
17 MR. KOCHIS: There is no further redirect.
18 THE COURT: Take him as your witness on purposes
19 of a Hitch motion, foundation, apparently.
20

21 DIRECT EXAMINATION

22 BY MR. NEGUS:

23 Q Can you type polymorphic enzymes and proteins from a
24 single hair root?
25 A Yes, you can.
26 MR. KOCHIS: Your Honor, excuse me. At this point I

007914

1 interpose an objection and I'd ask that he lay some foundation
2 as to this witness's expertise as to that particular facet.
3 It's in a field apart from the one we have been dealing with,
4 which is body fluids.

5 THE COURT: All right.

6 Q (BY MR. NEGUS:) Mr. Wraxall, using the same multisystem
7 techniques that you use to do saliva and blood and semen,
8 can you also types hairs?

9 A Yes.

10 Q Have you done that?

11 A Yes.

12 Q How many times?

13 A Not very often, but I have done them, probably, maybe,
14 a dozen or so times.

15 Q Is there published literature on -- on doing that kind
16 of work?

17 A Yes.

18 Q And have various reliability studies been done on
19 enzyme typing in hair?

20 A I believe so.

21 Q Are you aware of that literature generally as well?

22 A Yes.

23 Q And from hair roots, is it possible to -- to get an ABO
24 type?

25 A It has been reported that you can. Some studies have been
26 done over a period of years. And the first studies that

0
0
7
9
1
5

1 were done said that it was unreliable. I believe that
2 the FBI have brought out a technique where they say it
3 can be reliably done.

4 (No omissions.)

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

007916

15-1

1 Q Which technique do you use to do that?

2 A That was the absorption-elution.

3 Q What about enzymes? Can any of the enzymes that you

4 use in the multisystem be reliably typed from hair?

5 A Yes.

6 Q Which ones?

7 A This would only be in the hair root or the hair sheath.

8 We don't know of any where the enzyme types are found

9 in the shaft of the hair. It's normally where you've

10 got some root around the bottom part or some material

11 around the bottom part, and in that case you can do

12 Group I and you can obtain glyoxalase, esterase D

13 and PGM can be found. You're not necessarily going to

14 get them all, but there's a possibility that they do

15 exist. We -- I understand that you can find EAP and

16 possibly ADA and AK. I don't think any work has been

17 done on the proteins, and I, therefore, do not know

18 whether they're there or not.

19 Q Are you aware of like how much -- well, can you -- how

20 many -- can you do one test from a single hair?

21 A Yes, you can.

22 Q I take it you probably couldn't do any more than one

23 test?

24 A No, because you in fact put the hair plus its root

25 into the gel. Under electrophoresis conditions, all

26 enzymes are probably moved out of there, and you then

00791

15-2

1 stain it up for the ones that you're interested in.
2 The most likely one to go for would be Group I because
3 all three enzymes seem to appear in hair roots, but
4 you can't take that hair root or that same hair and
5 then subject it to another set of typing, because I
6 think the enzyme is probably gone.

7 Q. Group I, if you use PGM without subtyping, esterase D
8 and the glyoxalase, for a general population would
9 have the highest discriminatory powers of all the groups;
10 is that correct?

11 A. Yes.

12 Q. And that would include -- that would be for Caucasians,
13 blacks, Orientals, Chicanos, whatever?

14 A. Yes, yes.

15 Q. Are you aware as to whether or not polymorphic enzymes
16 exist in mucous?

17 A. Possibly. Anything that -- the enzymes -- a lot of
18 the enzymes that we look at, not only do they exist
19 in blood and semen, but they exist in tissue, so
20 any sort of epithelial cells, possibly mucous, may or
21 may not contain that enzyme.

22 Q. If you had epithelial cells in a substance that would
23 turn out to be mucous, could you type it directly from
24 the cells?

25 A. You could try. I mean I don't know that you would get
26 it to work, but what you would do is to try it; and if

007918

1 you got some activity, then fine. If you didn't, there's
2 no result.

3 Q. Do you know if there's any literature on that as to
4 whether or not that's a reliable process?

5 A. No. I don't believe -- I don't recall any literature
6 on that.

7 Q. With the -- with the hair, how long can the hair be
8 allowed to be kept in an unfrozen condition and still
9 hope to get typeable results out of it?

10 A. You've got two problems with that, and it's not an
11 easy answer. It can vary. It can vary from, you know,
12 the next day you've lost enzyme activity up to
13 possibly as much as nine months for the PGM. The
14 esterase D and the glyoxalase I would think would be
15 shorter. The problem that normally happens with hair
16 or the root is that the root dries up, shrivels up
17 and drops off, so you lose it, so you can't do anything
18 with it.

19 Q. How long does it take for the root to drop off?

20 A. It depends on how firmly it's attached, and it really
21 depends on how it's moved around mechanically, you
22 know. If you take that hair and keep it somewhere and
23 don't move it and keep it in a small place, then, you
24 know, you're not -- you're probably going to be able
25 to do enzyme typing a lot longer than if in fact you
26 put it in an envelope and ship it out, for example.

0
0
7
9
1
9

15-4

1 Q What range of variation are we talking about?
2 A In what, in terms of time?
3 Q Yeah.
4 A Well, I've been able to group hair roots up to six
5 weeks old. That's the extent of my best experience.
6 I've also taken hair roots that have been fairly fresh
7 and got no result. The only way you can really do it
8 is to do the test is the way to do it. You should
9 look and see whether there's any hair root to start
10 with, and if it is -- if there is, it's my opinion it
11 would be to do the typing as soon as possible. Even
12 if you freeze it, I'm sure there's a possibility that
13 you're still going to get it drying a bit, and it's
14 likely to drop off when you try to remove it; so the
15 sooner you do it, the better.
16 Q If you were to do enzyme typing on a hair, would that
17 in any way diminish the ability of a criminalist that
18 does hair comparisons to -- to do his work?
19 A Not as long as you're careful in that you don't
20 mechanically crush it or cut it, but certainly one of
21 the ways I do it is to stick the hair root into the
22 gel, and if it's a long hair, just curl the hair up
23 on the plate, run the test, run the electrophoresis,
24 and before staining, remove the hair, and then you
25 can go on and mount the slide and do the microscopic
26 examination after that.

0
0
7
9
2
0

15-5

1 Q If one were to get from epithelial -- if one were to
2 run epithelial --
3 A Epithelial.
4 Q -- epithelial cells for Group I and were to get a
5 recognizable esterase D result on your plate, running
6 it alongside of your semen and your blood and everything
7 else, would -- is there any other plausible explanation
8 for the particular bands being present in the same
9 spots as esterase D, for example, 1 bands would be
10 when you had esterase D there that you know of?
11 A If you got an esterase D 1 type, then whatever was
12 in that sample that you applied is an esterase D 1.
13 It depends on whether the epithelial cells are only
14 epithelial cells or whether there is a secretion in
15 there which has esterase D 1. Okay. For example,
16 if you had a mixture of epithelial cells from the
17 mouth and vaginal secretion, it may be that the vaginal
18 secretion has given you the esterase D 1.
19 Q What if you have a napkin that somebody blew their nose
20 in?
21 A If you get an esterase D 1, if you can be sure what
22 that fluid is, you know, you can certainly indicate
23 that that originated from a person who's an esterase D 1.
24 THE COURT: Are you about to conclude, Counsel?
25 MR. NEGUS: Getting close. I need to find one
26 piece of paper here, I think.

007921

1 Q What if you were to do Group IV and to get -- well,
2 can you get peptidase A and carbonic anhydrase out of
3 somebody blowing their nose?

4 A You might.

5 Q If you were to get a pattern that was consistent with
6 the peptidase A 1 --

7 A Yes.

8 Q -- would you be able to tell that?

9 A Yeah, if it's a good pattern. Assuming that it's a
10 good pattern and you interpret it as a peptidase A 1
11 type, then that originated from whatever you put into
12 the gel.

13 Q Just like any other body fluid?

14 A Yes, yes.

15 (No omissions.)

16

17

18

19

20

21

22

23

24

25

26

0
0
7
9
2
2

1 Q So in putting body fluids into -- doing electrophoresis
2 on different body fluids, what's important is whether
3 you get the right pattern or not rather than what body
4 fluids you're doing?

5 A. That's right. I mean, first of all, you know, it's a
6 good idea to try to identify the body fluid that you're
7 talking about. And also you're assuming that it is not
8 a mixture, okay, that it is uncontaminated body fluid.
9 If it becomes, that is, as a peptidase A 1 or whatever
10 enzyme type, then as long as it's a good, clear looking
11 pattern, then you can conclude that that originated from
12 somebody who is of that type.

13 MR. NEGUS: Thank you.

14 Nothing further.

CROSS EXAMINATION

17 BY MR. KOCHIS:

18 Q Mr. Wraxall, have you ever analyzed any mucous stains
19 to determine, for example, PEP A type or carbonic
20 anhydrase type?

21 A. No, no, I don't recall doing that.

22 Q. Any of the enzyme types with mucous stains?

23 A. I have looked at saliva, you know, and that may be called
24 mucousy. I don't know. It tends to be a little bit that
25 way. But I don't recall looking at nasal mucous for
26 enzyme typing.

007923

1 Q With the hair, the discussion that we had, for us laymen,
2 what does a follicle consist of?

3 A Well, I don't know the terms of -- I'm not quite sure
4 of the -- the terminology. What I'm talking about is
5 the sheath or the tissue in fact which adheres to the
6 root bulb. Okay. The base of the hair that is implanted
7 in the skin in fact is -- is a bulbous area, and around
8 that there is a certain amount of tissue that comes out
9 when you pull, particularly when you forcibly pull, the
10 hair out. That part of the material is more or less the
11 material that will give you the enzyme activity.

12 Q For example, if you took a pair of scissors and cut
13 someone's hair off, leaving the follicle intact, the --
14 the remaining hair you -- you could not do the enzyme
15 typing?

16 A That's correct.

17 Q The same with the ABO typing?

18 A Now, the ABO typing, they have been some work with
19 crushing the -- the shaft of the hair and getting ABO
20 results. How reliable those are I'm not sure. There has
21 been some discussion over the years about reliability of
22 ABO typing of hairs.

23 Q You testified that you have -- well, have you done electro-
24 phoretic tests on hair follicles to determine the various
25 enzyme types?

26 A On hair roots, sir, you know, if that's the exact -- the

0
0
7
9
2
4

1 follicle part is what I have been testing. But
2 certainly on hair roots with a certain amount of tissue
3 attached, I have done that test, yes.

4 Q And is that something you have done fairly recently?

5 A Within the last two or three years.

6 Q And is the use of electrophoresis with hair follicles
7 or the roots, is that something that was developed after,
8 for example, blood and the other stains, the other --

9 A Oh, yeah.

10 Q Is that something that's fairly recent?

11 A Yes.

12 Q And, in any event, once the follicle or root part
13 separates itself from the hair, that ends your ability
14 to conduct electrophoretic tests on it?

15 A Yes.

16 MR. KOCHIS: I have nothing further.

17

18 REDIRECT EXAMINATION

19 BY MR. NEGUS:

20 Q Just as a comparison, in terms of recentness, the hair
21 has been, for example, around longer than the transferrin,
22 is that correct, in terms of forensic work?

23 A Probably about the same length of time, I'd say.

24 Q There have been more published articles on hair than
25 transferrin?

26 A I think I know of only two on hair and only one on

0
0
7
9
2
5

1 transferrin.

2 MR. NEGUS: Okay. Nothing further.

3 MR. KOCHIS: No further recross.

4 THE COURT: Mr. Wraxall, thank you very much, sir,
5 for coming down and helping us.

6 THE WITNESS: May I be excused, Your Honor?

7 THE COURT: You certainly may.

8 THE WITNESS: Thank you.

9 THE COURT: It's time for a recess. Do we have more
10 witnesses?

11 MR. KOCHIS: Not today. We have Mr. Gregonis tomorrow
12 to conclude redirect and recross, and he will be the last
13 witness for tomorrow. I have Mr. Sensabaugh who is not
14 available until Monday morning, and he will be arriving by
15 airplane Sunday night. After he is done, Dr. Sparks.

16 THE COURT: Excuse me. Who is coming in on Thursday?
17 That's tomorrow.

18 MR. KOCHIS: Dan Gregonis, Your Honor.

19 THE COURT: Just Mr. Gregonis?

20 MR. KOCHIS: He's the only witness. I hate to refer
21 to it as "just Mr. Gregonis," but, yes, he's coming in
22 tomorrow. And to orient the Court, it's --

23 THE COURT: I wouldn't think you're going to be
24 very long with him, then.

25 MR. KOCHIS: I would think that is an accurate
26 assessment of my redirect.

007926

1 MR. NEGUS: I -- Mr. Gregonis, we're -- I'm predicting
2 to Mr. Kochis we'll be done with him by noon.

3 THE COURT: Well, I need time in chambers, anyhow,
4 on other matters.

5 MR. NEGUS: This is a particularly difficult motion,
6 Your Honor, for Mr. Kochis in that the scheduling of people
7 is not the easiest. Once we get into the Hitch motions and
8 the other stuff where the people are all sitting over in the
9 sheriff's department or doing things like that, I think you
10 will find that the -- that Mr. Kochis is able to produce
11 the witnesses much faster.

12 THE COURT: He is capable of speaking for himself.

13 MR. NEGUS: Just trying to help him out a little bit.

14 THE COURT: Counsel, I'm looking over and anticipating
15 and preparing for the prior acts. In looking that over, I
16 wonder if I could impose upon your office, Mr. Kochis, to
17 dig out all of those pages of the Discovery and perhaps
18 police reports on any of the priors that you intend to make
19 offers of proof on that you are serious about presenting.

20 You refer in here to the Preliminary Hearing and
21 primarily, however, to Pages, for instance, 160 and 161 of
22 the Discovery and a number of references to the Discovery.
23 And I don't have that. I wonder if you could perhaps make a
24 package of things that I might read before I hear oral offers
25 of proof.

26 This is on, you mentioned, pursuant to 1101b, and that

0
0
7
9
2
7

1 is not an enabling statute to present this sort of evidence,
2 actually. You're actually presenting it to show common
3 plan, scheme, intent, design, identity, that sort of thing.

4 MR. KOCHIS: Well, Your Honor, the practical problem
5 we need to get into is -- you notice from reading both the
6 motions that a lot of the factors that I mention in the 1101(b)
7 motion we mentioned as evidence we intend to produce during
8 the penalty phase, factors in aggravation.

9 THE COURT: This is offered strictly for the
10 guilt phase, as I understand.

11 MR. KOCHIS: But there's two. Mr. Negus asked me
12 to file two, and I did. And the problem we're at this
13 juncture is Judge Kayashima wants --

14 THE COURT: Counsel, I'm fully aware of that. And I
15 know that you have another one which I'm not looking at.
16 I'm looking only at the one on the --

17 MR. NEGUS: They're identical.

18 MR. KOCHIS: They're identical. And what I'm saying
19 is the practical problem is I suggest we turn perhaps to the
20 statements in aggravation, because I think even Mr. Negus
21 would agree that a number of things that may not technically
22 be admissible under 1101 are certainly going to be admissible
23 if we get to a penalty phase in terms of aggravating factors.
24 And if the Court decides that, then he's going to make the
25 claim that he should be allowed to investigate those.

26 MR. NEGUS: I'm not sure that that Judge -- I'm not

007928

1 sure that we're going to be in a situation of investigation --
2 I think that we -- well, I'll have to go back and read what
3 Judge Kayashima told me again, but my belief was that he
4 wanted me to first of all get the -- get the question of 1101(b)
5 straightened out. As far as investigations to take place
6 in preparation for the penalty phase, we might not need to
7 do that so quickly, and it might not even ever happen.

8 THE COURT: It seems like an excellent idea for us
9 to have a hearing as to what is coming out in the guilt phase.
10 So let's get a package together, if you can. If there's
11 other things that he may need to investigate, then at least
12 the time element is longer. If it's just going to come out
13 in the guilt -- in the penalty phase --

14 MR. KOCHIS: I can try to get the package.

15 THE COURT: Okay. Then we'll break it until tomorrow
16 at 9:30. Thank you.

17 (Whereupon the proceedings concluded at
18 3:02 p.m.)

19
20
21
22
23
24
25
26

0
0
7
9
2
9